Building competency in your Facilities Engineers

Upstream and midstream surface facilities are a critical component in the production and transportation of oil, gas and water. While facilities typically do not represent the largest capital cost segment of a field development project, it is imperative that they be properly designed and operated to maximize throughput and availability.

A competent Facility/Process engineer requires knowledge of a broad range of systems, e.g. separation, piping, rotating equipment, instrumentation and control, safety, electrical, etc. This required breadth of knowledge is unique relative to other engineers and technical professionals in the industry. John M. Campbell & Co. provides a wide selection of training programs to ensure your Facility/Process engineers quickly reach and maintain competency in this complex area.

As you read through our catalog you will see several examples of career training progressions for Facility/Process engineers. These have been organized to reflect different areas of interest, e.g. production facilities, midstream, offshore, etc. These suggested progressions provide a snapshot of the range of training programs available from JMC and how they can be used to quickly build competency in a workforce.

In 2010 we added two new courses to our catalog, Process Safety Engineering (PS-4) and Onshore Gas Gathering Systems: Design and Operation (PF-45). Again we are excited to be introducing two new courses for 2011.

- ICE-21 Instrumentation, Controls and Electrical Systems for Facilities Engineers
 - Applicable to field production facilities, pipelines, gas plants, and offshore systems, this course provides an overview of electrical power generation and distribution, process safety systems, instrumentation, control strategies and configurations.

- PF-44 Relief and Flare Systems – Applicable to any oil and gas facility, this course provides in-depth training of the system needs and causes for relief and flare, selecting and sizing the critical components, and the use of codes and standards coupled with industry best practices.

Competent Facilities/Process engineers are essential to the efficient, safe and profitable development of energy projects. Since 1967 John M. Campbell & Co. has been the leader in the development and delivery of effective training solutions for facilities personnel for oil and gas organizations worldwide. We are proud to be one of the most recognized and respected training companies in this important and dynamic industry.

Our Mission

To build proficient energy professionals that serve the energy needs of the global community.

Robert A. Hubbard
President
John M. Campbell & Co.
WHAT SETS PETROSKILLS APART? THE ALLIANCE.

From original members, Shell and BP, to the most recent, Talisman, MOL, Pertamina and Maersk Oil; the PetroSkills advantage lies with its members. What do the PetroSkills members provide to the Alliance and training industry?

• Curriculum advisors and Subject Matter Experts who direct and update PetroSkills competency maps for each technical discipline
• Competency assurance through adoption of structured personnel development based on industry approved competency maps
• Quality control and assurance that PetroSkills course material and instructors meet the highest industry standard

So what is PetroSkills? The differentiator... industry-driven competencies.

IT’S ALL IN THE MAPS. It’s easy to talk about “developing the competency of employees,” but what does that really mean? How do you establish that baseline for competency development? PetroSkills addresses this question with detailed competency maps. These maps define non-unique, but necessary job skills at skill levels ranging from awareness to mastery. These competency maps represent the shared viewpoint of PetroSkills Alliance contributors. It is not PetroSkills telling the industry what’s important – it’s the industry guiding PetroSkills.

A foundation of competency-based learning and development.

PetroSkills course content is based on the competency maps developed with and by the member companies. Every discipline has clearly defined skills contained in each competency map that ensures professionals they will receive the skills they need at their individual level and put them on the right track for advancement. The member curriculum advisors and the PetroSkills Board must approve each course and its material content, establishing that it is practical, up-to-date and relevant training. There are 190 courses offered to the public in over 40 locations worldwide, and are also available at your location, anywhere in the world, on an in-house basis.

PetroSkills does not just provide a service to the oil and gas industry. PetroSkills IS the oil and gas industry.

MEMBER COMPANIES
From original members, Shell and BP, to the most recent, Talisman, MOL, Pertamina and Maersk Oil; the PetroSkills advantage lies with its members. What do the PetroSkills members provide to the Alliance and training industry?

• Curriculum advisors and Subject Matter Experts who direct and update PetroSkills competency maps for each technical discipline
• Competency assurance through adoption of structured personnel development based on industry approved competency maps
• Quality control and assurance that PetroSkills course material and instructors meet the highest industry standard

SERVICE PROVIDERS
OGCI, TTG Systems, John M Campbell & Co, University of Trinidad & Tobago, and Southern Alberta Institute of Technology power the Alliance initiative by providing:

• Training that spans the industry, all from the same provider, using the same model
• Integrated and Accelerated development programs
• Competency-based solutions
• Virtual learning
• In-house training
• Operations and maintenance competencies
• Web based competency analysis tools
John M. Campbell & Co. Delivers Competency

An experienced, seasoned facilities engineer requires competence in a number of areas. John M. Campbell & Co. has been providing this competence to upstream and midstream professionals for over 40 years.

We understand the shortage of experienced engineering staff causes strain on the world’s petroleum companies which is why our courses are designed to accelerate the transition from new hire to fully functioning team member. We do this by providing training courses that are highly technical, interactive, and facilitated by industry experts with hands-on field experience.

John M. Campbell & Company is the exclusive provider of PetroSkills facilities training and one of the most distinguished providers of facilities training in the oil and gas industry. We provide the most comprehensive collection of Facilities training, including the industry standard, the Campbell Gas Course (G-4 Gas Conditioning and Processing), and are continually developing new courses.

Courses are offered in the fields of Gas Processing, Production Facilities, Offshore, Pipeline, Instrumentation and Controls, Electrical, Mechanical, Operations Management, Supply Chain, Refining, Reliability Engineering and Operator Training.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>How to Quickly Build Competency in Surface Facility Engineers</td>
</tr>
<tr>
<td>5</td>
<td>Course Progression Matrices</td>
</tr>
<tr>
<td>9</td>
<td>My Personal FastTrack</td>
</tr>
<tr>
<td>10</td>
<td>2011 Course Schedule</td>
</tr>
<tr>
<td>12</td>
<td>Campbell Customized Courses</td>
</tr>
<tr>
<td>14</td>
<td>Workforce Development</td>
</tr>
<tr>
<td>15</td>
<td>About John M. Campbell & Co.</td>
</tr>
<tr>
<td>16</td>
<td>Gas Processing Course Progression</td>
</tr>
<tr>
<td>17</td>
<td>G-4 Gas Conditioning and Processing</td>
</tr>
<tr>
<td>18</td>
<td>Sample Course Outline</td>
</tr>
<tr>
<td>19</td>
<td>G-1 Overview of Gas Processing - Non-Technical</td>
</tr>
<tr>
<td>20</td>
<td>G-2 Overview of Gas Processing - Technical</td>
</tr>
<tr>
<td>21</td>
<td>G-29 LNG Short Course: Technology and the LNG Chain</td>
</tr>
<tr>
<td>20</td>
<td>PS-4 Process Safety Engineering</td>
</tr>
<tr>
<td>21</td>
<td>G-4 LNG Gas Conditioning and Processing - LNG Emphasis</td>
</tr>
<tr>
<td>22</td>
<td>G-40 Process/Facility Fundamentals</td>
</tr>
<tr>
<td>23</td>
<td>G-5 Gas Conditioning and Processing - Special</td>
</tr>
<tr>
<td>24</td>
<td>Production Facilities Course Progression</td>
</tr>
<tr>
<td>25</td>
<td>PF-4 Oil Production and Processing Facilities</td>
</tr>
<tr>
<td>26</td>
<td>PF-21 Applied Water Technology in Oil and Gas Production</td>
</tr>
<tr>
<td>27</td>
<td>PF-22 Corrosion Management in Production/Processing Operations</td>
</tr>
<tr>
<td>28</td>
<td>PF-45 Onshore Gas Gathering Systems: Design & Operation</td>
</tr>
<tr>
<td>29</td>
<td>PF-44 Relief and Flare Systems</td>
</tr>
<tr>
<td>30</td>
<td>PF-43 Heat Transfer Equipment</td>
</tr>
<tr>
<td>31</td>
<td>PF-42 Separation Equipment - Selection & Sizing</td>
</tr>
<tr>
<td>32</td>
<td>Pipeline Course Progression</td>
</tr>
<tr>
<td>33</td>
<td>PL-4 Fundamentals of Onshore and Offshore Pipeline Systems</td>
</tr>
<tr>
<td>34</td>
<td>PL-42 Onshore Pipeline - Design, Construction and Operations</td>
</tr>
<tr>
<td>35</td>
<td>PL-61 Flow Assurance for Pipeline Systems</td>
</tr>
<tr>
<td>36</td>
<td>Instrumentation, Controls and Electrical</td>
</tr>
<tr>
<td>37</td>
<td>ICE-21 Instrumentation, Controls and Electrical Systems for Facilities Engineers</td>
</tr>
<tr>
<td>38</td>
<td>ICE-4 Instrumentation and Controls Engineering Practices for Facilities Engineers</td>
</tr>
<tr>
<td>39</td>
<td>Mechanical</td>
</tr>
<tr>
<td>40</td>
<td>ME-41 Piping Systems - Mechanical Design and Specification</td>
</tr>
<tr>
<td>41</td>
<td>ME-44 Overview of Pump and Compressor Systems</td>
</tr>
<tr>
<td>42</td>
<td>ME-46 Compressor Systems - Mechanical Design and Specification</td>
</tr>
<tr>
<td>43</td>
<td>ME-62 Turbomachinery Monitoring and Problem Analysis</td>
</tr>
<tr>
<td>44</td>
<td>Operations Management</td>
</tr>
<tr>
<td>45</td>
<td>OM-21 Applied Maintenance Management</td>
</tr>
<tr>
<td>46</td>
<td>OM-22 Project Management for Engineering and Construction</td>
</tr>
<tr>
<td>47</td>
<td>OM-23 Essential Leadership Skills</td>
</tr>
<tr>
<td>48</td>
<td>OM-24 Seven Keys to World Class Asset Management</td>
</tr>
<tr>
<td>49</td>
<td>OM-25 Optimizing Preventive and Predictive Maintenance</td>
</tr>
<tr>
<td>50</td>
<td>OM-26 Maintenance Planning and Work Control</td>
</tr>
<tr>
<td>51</td>
<td>OM-43 Effective Maintenance Shutdowns</td>
</tr>
<tr>
<td>52</td>
<td>Procurement/Supply Chain</td>
</tr>
<tr>
<td>53</td>
<td>SC-41 Contracts and Tenders Fundamentals</td>
</tr>
<tr>
<td>54</td>
<td>SC-42 Effective Materials Management</td>
</tr>
<tr>
<td>55</td>
<td>SC-61 Inside Procurement in Oil & Gas</td>
</tr>
<tr>
<td>56</td>
<td>Refining</td>
</tr>
<tr>
<td>57</td>
<td>RF-31 Refining Technology Overview</td>
</tr>
<tr>
<td>58</td>
<td>RF-61 Refinery Gas Treating, Sour Water, Sulfur and Tail Gas</td>
</tr>
<tr>
<td>59</td>
<td>Reliability Engineering</td>
</tr>
<tr>
<td>60</td>
<td>REL-4 Optimizing Asset Availability Using Reliability Engineering</td>
</tr>
<tr>
<td>61</td>
<td>Operator Training</td>
</tr>
<tr>
<td>62</td>
<td>P-3 Production/Processing Operations (OT)</td>
</tr>
<tr>
<td>63</td>
<td>Gas Dehydration Operations (OT)</td>
</tr>
<tr>
<td>64</td>
<td>Cryogenic NGL Recovery and NGL Fractionation (OT)</td>
</tr>
<tr>
<td>65</td>
<td>Process Safety Case Study for Operations and Maintenance (OT-21)</td>
</tr>
<tr>
<td>66</td>
<td>JMC Consulting</td>
</tr>
<tr>
<td>67</td>
<td>Campbell Tip of the Month</td>
</tr>
<tr>
<td>68</td>
<td>Books and Software</td>
</tr>
<tr>
<td>69</td>
<td>PetroSkills Exploration & Production</td>
</tr>
<tr>
<td>70</td>
<td>Instructor Biographies</td>
</tr>
<tr>
<td>71</td>
<td>Contacts and Registration Policies</td>
</tr>
</tbody>
</table>

All classes available at your location. Contact us today.
How to Quickly Build Competency in Surface Facility Engineers

Structured, integrated training programs taken in a logical progression are the key to quickly developing a “broad-based” facilities engineer with competencies in many areas.

The Society of Petroleum Engineers describes the knowledge components necessary as “covering a wide range including all aspects of surface facilities design (process/utility systems and equipment, measurement and control, electrical systems, flow assurance, materials, corrosion, solids handling), project management, safety, environmental, operations and abandonment. Included are: onshore, offshore (subsea, platform-based, and floating-based systems), and pipelines for oil and gas developments as well as LNG, CNG, GTL plants, terminals and transportation concepts”.

A surface facilities engineer may not need to know how to design or specify an electrical substation or a motor control center, but will need to understand: voltage levels, electrical classifications, how to specify electric motors, where variable speed motors are best used and their effect on the electrical system or how power factor affects the cost of purchased power.

Additionally, a surface facilities engineer may not need to know how to change-out a reciprocating compressor valve or analyze a vibration problem in a high speed centrifugal, but will need to understand: how valve unloaders and clearance pockets are used to control compressor capacity in a gas gathering system, the effect of MW and suction temperature on the performance of a centrifugal compressor in an offshore production facility.

To deliver the necessary competencies in a timely and effective manner John M. Campbell & Company training courses follow a logical course progression where learning in each course builds on previous courses. Training methods employ multiple delivery techniques to maximize retention of the technical content. The diagram below illustrates the broad approach JMC visualizes to develop “broad-based” facilities engineers. Using this approach for your specific career growth is discussed in the Course Progression matrices that follow.

Understanding the Course Progression Matrices - Pages 5 – 9

For an engineer starting in a facilities technical role, a logical progression would typically begin with a foundation level course such as the Gas Conditioning and Processing (G-4) course or Oil Production and Processing (PF-4). Subsequent Intermediate courses can then be chosen to increase competency. Beyond these, additional courses may be chosen for more in-depth specialization.

<table>
<thead>
<tr>
<th>Specialized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flare and Relief</td>
</tr>
<tr>
<td>Non-Rotating Equipment</td>
</tr>
<tr>
<td>Pipelines</td>
</tr>
<tr>
<td>Produced Water Treating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Oil & Gas Processing Topics</td>
</tr>
<tr>
<td>Rotating Equipment</td>
</tr>
<tr>
<td>Process Safety</td>
</tr>
<tr>
<td>Instrumentation & Controls, Electrical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS-4 Offshore</td>
</tr>
<tr>
<td>G-4 Gas Processing</td>
</tr>
<tr>
<td>PF-4 Production Facilities</td>
</tr>
<tr>
<td>PL-4 Pipeline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS-21 Offshore</td>
</tr>
<tr>
<td>G-2 Intro to Gas Proc.</td>
</tr>
<tr>
<td>G-29 LNG</td>
</tr>
<tr>
<td>PF-2 Intro to Facilities</td>
</tr>
</tbody>
</table>

All classes available at your location. Contact us today.
Gas Processing Engineer Course Progression

Example of recommended courses to develop a Gas Processing Engineer over a 3-year span.

Year 1
- **Process Safety Engineering** (PS-4)
- **Instrumentation, Controls and Electrical Systems for Facilities Engineers** (ICE-21)
- **Heat Transfer Equipment** (PF-43)
- **Gas Conditioning and Processing** (G-4)

Year 2
- **Corrosion Management in Production/Processing Operations** (PF-22)
- **Relief and Flare Systems** (PF-44)
- **Onshore Gas Gathering Systems: Design and Operation** (PF-45)
- **Compressor Systems – Mechanical Design and Specification** (ME-46)

Year 3
- **Project Management for Engineering and Construction** (OM-22)
- **CO₂ Surface Facilities** (PF-81)
- **Overview of Offshore Systems** (OS-21)
- **LNG Short Course: Technology and the LNG Chain** (G-29)

Additional courses offer further depth in developing competencies.

For broader knowledge, these are recommended.

A 3-year progression for a Gas Processing Engineer would begin with the Gas Conditioning and Processing (G-4) course.

All classes available at your location. Contact us today.

www.jmcampbell.com | www.petroskills.com | 1.405.321.1383 | 5
Production Facilities Engineer Course Progression
Example of recommended courses to develop a Production Facilities Engineer over a 3-year span.

1. A 3-year progression for a Production Facilities Engineer would begin with the Oil Production and Processing (PF-4) course.

2. Additional courses offer further depth in developing competencies.

3. For broader knowledge, these are recommended.

Example of a Production Facilities Engineer Progression
Offshore Engineer Course Progression

Example of recommended courses to develop an Offshore Engineer over a 3-year span.

1. A 3-year progression for an Offshore Engineer would begin with the Fundamentals of Offshore Design and Construction (OS-4) course.

2. Additional courses offer further depth in developing competencies.

3. For broader knowledge, these are recommended.

Example of an Offshore Engineer Progression
Pipeline Engineer Course Progression

Example of recommended courses to develop a Pipeline Engineer over a 3-year span.

1. Fundamentals of Onshore and Offshore Pipeline Systems (PL-4)

2. Additional courses offer further depth in developing competencies.

3. For broader knowledge, these are recommended.

A 3-year progression for a Pipeline Engineer would begin with the Fundamentals of Onshore and Offshore Pipeline Systems (PL-4) course.
My Personal FastTrack to Competency (3-year plan)

You know what your career goals are but have you figured out the best way to get there? Comprehensive self-assessment can highlight areas in which you may need training. Use this chart to develop your own personal FastTrack to competency progression.

Career Goal: __

1. Choose a Foundation course, such as Gas Conditioning and Processing (G-4), Oil Production and Processing (PF-4), Fundamentals of Offshore Design and Construction (OS-4) or Fundamentals of Onshore and Offshore Pipeline Systems (PL-4).

2. Additional courses, such as Process Safety Engineering (PS-4) or Corrosion Management in Production/Processing Operations (PF-22), or other company-specific training, for further depth in developing competencies.

3. For broader knowledge, choose courses such as Project Management for Engineering and Construction (OM-22).

Record the Course Name, Date and Location on the lines below.

All classes available at your location. Contact us today.

2011 COURSE SCHEDULE

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Start Date</th>
<th>End Date</th>
<th>Location</th>
<th>Tuition</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-5</td>
<td>Gas Conditioning and Processing - Special</td>
<td>1/17/11</td>
<td>1/21/11</td>
<td>Calgary</td>
<td>$3,770</td>
<td>21</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>1/31/11</td>
<td>2/11/11</td>
<td>London</td>
<td>$8,730</td>
<td>17</td>
</tr>
<tr>
<td>PF-4</td>
<td>Oil Production & Processing Facilities</td>
<td>1/31/11</td>
<td>2/11/11</td>
<td>Houston</td>
<td>$6,290</td>
<td>25</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>2/7/11</td>
<td>2/18/11</td>
<td>Houston</td>
<td>$6,780</td>
<td>17</td>
</tr>
<tr>
<td>E-3</td>
<td>Electrical Engineering Fundamentals for Engineers</td>
<td>2/14/11</td>
<td>2/18/11</td>
<td>Houston</td>
<td>$3,140</td>
<td>34</td>
</tr>
<tr>
<td>PS-4</td>
<td>Process Safety Engineering</td>
<td>2/14/11</td>
<td>2/18/11</td>
<td>London</td>
<td>$4,330</td>
<td>20</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>2/20/11</td>
<td>3/10/11</td>
<td>Doha</td>
<td>$8,250</td>
<td>17</td>
</tr>
<tr>
<td>IC-3</td>
<td>Instrumentation and Controls Fundamentals for Engineers</td>
<td>2/21/11</td>
<td>2/25/11</td>
<td>Houston</td>
<td>$3,140</td>
<td>35</td>
</tr>
<tr>
<td>SC-61</td>
<td>Inside Procurement in Oil and Gas</td>
<td>2/22/11</td>
<td>2/24/11</td>
<td>Houston</td>
<td>$3,140</td>
<td>35</td>
</tr>
<tr>
<td>SC-61</td>
<td>Inside Procurement in Oil and Gas</td>
<td>3/21/11</td>
<td>3/25/11</td>
<td>Houston</td>
<td>$3,140</td>
<td>20</td>
</tr>
<tr>
<td>PF-21</td>
<td>Applied Water Technology in Oil and Gas Production</td>
<td>3/21/11</td>
<td>3/25/11</td>
<td>Houston</td>
<td>$3,140</td>
<td>20</td>
</tr>
<tr>
<td>PS-4</td>
<td>Process Safety Engineering</td>
<td>3/21/11</td>
<td>3/25/11</td>
<td>Houston</td>
<td>$3,140</td>
<td>20</td>
</tr>
<tr>
<td>SC-41</td>
<td>Contracts and Tenders Fundamentals</td>
<td>3/22/11</td>
<td>3/24/11</td>
<td>Houston</td>
<td>$2,880</td>
<td>37</td>
</tr>
<tr>
<td>PF-4</td>
<td>Oil Production & Processing Facilities</td>
<td>3/28/11</td>
<td>4/8/11</td>
<td>Houston</td>
<td>$3,350</td>
<td>22</td>
</tr>
<tr>
<td>PF-4</td>
<td>Oil Production & Processing Facilities</td>
<td>4/3/11</td>
<td>4/14/11</td>
<td>Dubai</td>
<td>$7,460</td>
<td>25</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>5/2/11</td>
<td>5/13/11</td>
<td>Calgary</td>
<td>$6,780</td>
<td>17</td>
</tr>
<tr>
<td>ICE-21</td>
<td>Overview of Electrical, Controls and Instrumentation Systems in Oil and Gas</td>
<td>5/9/11</td>
<td>5/13/11</td>
<td>London</td>
<td>$4,330</td>
<td>34</td>
</tr>
<tr>
<td>PL-4</td>
<td>Fundamentals of Onshore and Offshore Pipeline Systems</td>
<td>5/9/11</td>
<td>5/20/11</td>
<td>Kuala Lumpur</td>
<td>$7,070</td>
<td>33</td>
</tr>
<tr>
<td>G-29</td>
<td>LNG Short Course: Technology and the LNG Chain</td>
<td>5/23/11</td>
<td>5/27/11</td>
<td>London</td>
<td>$3,400</td>
<td>19</td>
</tr>
<tr>
<td>OM-24</td>
<td>Seven Keys to World Class Asset Management</td>
<td>6/6/11</td>
<td>6/7/11</td>
<td>Houston</td>
<td>$1,280</td>
<td>38</td>
</tr>
<tr>
<td>OM-25</td>
<td>Optimizing Preventive and Predictive Maintenance</td>
<td>6/6/11</td>
<td>6/10/11</td>
<td>Houston</td>
<td>$1,920</td>
<td>38</td>
</tr>
<tr>
<td>PF-4</td>
<td>Oil Production & Processing Facilities</td>
<td>6/13/11</td>
<td>6/24/11</td>
<td>Kuala Lumpur</td>
<td>$7,420</td>
<td>25</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>6/20/11</td>
<td>7/1/11</td>
<td>Aberdeen</td>
<td>$8,730</td>
<td>17</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>7/11/11</td>
<td>7/22/11</td>
<td>Denver</td>
<td>$6,920</td>
<td>17</td>
</tr>
<tr>
<td>SS-2</td>
<td>Overview of Subsea Systems</td>
<td>7/18/11</td>
<td>7/22/11</td>
<td>Singapore</td>
<td>$4,490</td>
<td>31</td>
</tr>
<tr>
<td>G-29</td>
<td>LNG Short Course: Technology and the LNG Chain</td>
<td>7/25/11</td>
<td>7/29/11</td>
<td>Perth</td>
<td>$3,670</td>
<td>19</td>
</tr>
<tr>
<td>OS-21</td>
<td>Overview of Offshore Systems</td>
<td>7/25/11</td>
<td>7/29/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>31</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>8/1/11</td>
<td>8/12/11</td>
<td>Perth</td>
<td>$8,440</td>
<td>17</td>
</tr>
<tr>
<td>Code</td>
<td>Course Name</td>
<td>Start Date</td>
<td>End Date</td>
<td>Location</td>
<td>Tuition</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>PL-42</td>
<td>Onshore Pipeline Facilities - Design, Construction and Operations</td>
<td>8/15/11</td>
<td>8/19/11</td>
<td>Denver</td>
<td>$3,455</td>
<td>33</td>
</tr>
<tr>
<td>PS-4</td>
<td>Process Safety Engineering</td>
<td>8/15/11</td>
<td>8/19/11</td>
<td>Perth</td>
<td>$3,670</td>
<td>20</td>
</tr>
<tr>
<td>G-2</td>
<td>Overview of Gas Processing - Technical</td>
<td>8/16/11</td>
<td>8/18/11</td>
<td>Houston</td>
<td>$2,490</td>
<td>19</td>
</tr>
<tr>
<td>ME-44</td>
<td>Overview of Pumps and Compressors in Oil and Gas Facilities</td>
<td>8/22/11</td>
<td>9/1/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>36</td>
</tr>
<tr>
<td>SC-61</td>
<td>Inside Procurement in Oil and Gas</td>
<td>8/30/11</td>
<td>9/9/11</td>
<td>Kuala Lumpur</td>
<td>$4,490</td>
<td>34</td>
</tr>
<tr>
<td>ICE-21</td>
<td>Overview of Electrical, Controls and Instrumentation Systems in Oil and Gas</td>
<td>9/5/11</td>
<td>9/9/11</td>
<td>Kuala Lumpur</td>
<td>$4,490</td>
<td>27</td>
</tr>
<tr>
<td>PF-44</td>
<td>Relief and Flare Systems</td>
<td>9/5/11</td>
<td>9/23/11</td>
<td>Houston</td>
<td>$6,920</td>
<td>17</td>
</tr>
<tr>
<td>PF-4</td>
<td>Oil Production & Processing Facilities</td>
<td>9/19/11</td>
<td>9/30/11</td>
<td>Aberdeen</td>
<td>$8,730</td>
<td>17</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>9/26/11</td>
<td>9/30/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>25</td>
</tr>
<tr>
<td>PF-21</td>
<td>Applied Water Technology in Oil and Gas Production</td>
<td>9/26/11</td>
<td>9/30/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>21</td>
</tr>
<tr>
<td>G-40</td>
<td>Process/Facility Fundamentals</td>
<td>9/26/11</td>
<td>9/30/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>31</td>
</tr>
<tr>
<td>PF-22</td>
<td>Corrosion Management in Production/Processing Operations</td>
<td>10/3/11</td>
<td>10/7/11</td>
<td>Houston</td>
<td>$3,300</td>
<td>19</td>
</tr>
<tr>
<td>SS-2</td>
<td>Overview of Subsea Systems</td>
<td>10/4/11</td>
<td>10/8/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>36</td>
</tr>
<tr>
<td>ME-62</td>
<td>Turbomachinery Monitoring and Problem Analysis</td>
<td>10/9/11</td>
<td>10/13/11</td>
<td>Houston</td>
<td>$2,220</td>
<td>39</td>
</tr>
<tr>
<td>SC-41</td>
<td>Contracts and Tenders Fundamentals</td>
<td>10/10/11</td>
<td>10/14/11</td>
<td>Houston</td>
<td>$3,455</td>
<td>21</td>
</tr>
<tr>
<td>G-5</td>
<td>Gas Conditioning and Processing - Special</td>
<td>10/10/11</td>
<td>10/14/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>28</td>
</tr>
<tr>
<td>ME-41</td>
<td>Piping Systems - Mechanical Design and Specification</td>
<td>10/17/11</td>
<td>10/21/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>27</td>
</tr>
<tr>
<td>PF-42</td>
<td>Separation Equipment - Selection & Sizing</td>
<td>10/17/11</td>
<td>10/21/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>34</td>
</tr>
<tr>
<td>PF-44</td>
<td>Relief and Flare Systems</td>
<td>10/17/11</td>
<td>10/28/11</td>
<td>Kuala Lumpur</td>
<td>$3,320</td>
<td>19</td>
</tr>
<tr>
<td>E-3</td>
<td>Electrical Engineering Fundamentals for Facilities Engineers</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>36</td>
</tr>
<tr>
<td>G-29</td>
<td>LNG Short Course: Technology and the LNG Chain</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Singapore</td>
<td>$6,790</td>
<td>31</td>
</tr>
<tr>
<td>ME-46</td>
<td>Compressor Systems - Mechanical Design and Specification</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Orlando</td>
<td>$6,920</td>
<td>25</td>
</tr>
<tr>
<td>PF-4</td>
<td>Oil Production & Processing Facilities</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>35</td>
</tr>
<tr>
<td>G-6</td>
<td>Gas Treating and Sulfur Recovery</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Orlando</td>
<td>$6,920</td>
<td>17</td>
</tr>
<tr>
<td>IC-3</td>
<td>Instrumentation and Controls Fundamentals for Facilities Engineers</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Cairo</td>
<td>$8,250</td>
<td>17</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>10/24/11</td>
<td>10/28/11</td>
<td>Kuala Lumpur</td>
<td>$3,320</td>
<td>32</td>
</tr>
<tr>
<td>G-2</td>
<td>Overview of Gas Processing - Technical</td>
<td>11/14/11</td>
<td>11/15/11</td>
<td>Orlando</td>
<td>$1,280</td>
<td>38</td>
</tr>
<tr>
<td>OM-24</td>
<td>Seven Keys to World Class Asset Management</td>
<td>11/14/11</td>
<td>11/15/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>27</td>
</tr>
<tr>
<td>PF-45</td>
<td>Onshore Gas Gathering Systems: Design & Operations</td>
<td>11/14/11</td>
<td>11/18/11</td>
<td>Orlando</td>
<td>$1,920</td>
<td>38</td>
</tr>
<tr>
<td>OM-25</td>
<td>Optimizing Preventive and Predictive Maintenance</td>
<td>11/16/11</td>
<td>11/18/11</td>
<td>Cairo</td>
<td>$8,250</td>
<td>17</td>
</tr>
<tr>
<td>G-4</td>
<td>Gas Conditioning and Processing</td>
<td>12/3/11</td>
<td>12/9/11</td>
<td>Kuala Lumpur</td>
<td>$4,490</td>
<td>36</td>
</tr>
<tr>
<td>ME-44</td>
<td>Overview of Pumps and Compressors in Oil and Gas Facilities</td>
<td>12/5/11</td>
<td>12/9/11</td>
<td>Orlando</td>
<td>$3,455</td>
<td>31</td>
</tr>
<tr>
<td>OS-21</td>
<td>Overview of Offshore Systems</td>
<td>12/5/11</td>
<td>12/9/11</td>
<td>Orlando</td>
<td>$3,170</td>
<td>40</td>
</tr>
<tr>
<td>REL-4</td>
<td>Optimizing Asset Availability Using Reliability Engineering</td>
<td>12/5/11</td>
<td>12/9/11</td>
<td>Orlando</td>
<td>$3,170</td>
<td>40</td>
</tr>
</tbody>
</table>
Any Course, Any Time, Any Place

John M. Campbell & Co. is committed to making training as convenient as possible, that’s why we offer our courses in cities known to be hubs of oil and gas activity, minimizing your travel and other related costs and adding value to our courses.

Don’t see the course you need on our schedule?
All of our courses can also be scheduled on an In-House or Sponsored Public basis at the location of your choice. So whether you are looking for training for just yourself or your entire team, John M. Campbell & Co. offers an option to fit your needs.

<table>
<thead>
<tr>
<th></th>
<th>Sponsored Public</th>
<th>In-House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Registrations</td>
<td>Sponsored by 2 or more clients, each committing 5-8 registrations</td>
<td>12</td>
</tr>
<tr>
<td>Who Attends</td>
<td>Open Registration</td>
<td>Selected by Client</td>
</tr>
<tr>
<td>Location</td>
<td>Worldwide based on Consultation with Clients</td>
<td>Worldwide hosted by Client</td>
</tr>
<tr>
<td>Teambuilding with Coworkers</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Networking with Industry Peers</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Course Materials</td>
<td>Standard</td>
<td>Customizable</td>
</tr>
</tbody>
</table>

In-House Courses
In-House courses allow participants to receive comprehensive training and individualized attention from top instructors and are an excellent solution to training needs when travel budgets are reduced. Using our resources, we can develop customized and relevant training programs on virtually any petroleum related subject while incorporating a company’s own data into the curriculum. All course attendees are limited to your internal employees and can be held anywhere you need training.

Have too few participants for an In-House course? Consider a Sponsored Public course.
Sponsored Public courses are courses held using our standard course material for 2 or more clients, each committing 5-8 registrations. The course location is arranged with the sponsoring client with John M. Campbell & Co. then opening registration to the public.
Campbell Customized Courses

At John M. Campbell & Co., public and In-House training sessions represent only a portion of the training we provide. Increasingly, clients come to us with training requests that require customization from a specific viewpoint. These can be delivered face-to-face or online, and with mentoring or remote coaching.

We continue to work closely with clients to meet very specific geographic or asset based learning requirements. These customized courses typically use part of an existing Campbell course that is then enhanced with additional content. This content can be developed by Campbell exclusively, or collaboratively with input and direction from the client. These courses, once developed, often become a regularly scheduled course in the client’s training program.

For example, a Campbell Customized Course might include 70% Campbell material and 30% Client material. Campbell Customized Courses can be taught using John M. Campbell & Co. instructors alongside company Subject Matter Experts (SME) to produce an exceptional learning experience that reinforces company culture and priorities along with the technical content.

If your company has an interest in learning more about Campbell Customized Courses, please call 1-405-321-1383 or email jmcsupport@jmcampbell.com.

Course Previews Available Online

John M. Campbell & Co. courses have been taught all over the world for over 40 years. JMC is consistently upgrading courses and adding new ones based on industry demand. To keep you familiar with our course content, we are now making course previews available on our website.

Previews include a brief overview of the course content followed by a presentation of a section of the course materials. A preview of our popular PF-4 Oil Production and Processing Facilities course is now available and more courses are being added.

If you would like to know more about our courses prior to enrolling visit: www.jmcampbell.com/previews
“We need 50 more competent engineers for the new project by next year. Send everyone to some classes.”

If this sounds familiar, let JMC help you move from great classes to a Workforce Development plan that includes all of the elements (mentoring, coaching, classes, on-the-job training, work experience) needed to decrease the time to competency for your workforce.

We can help you by providing:

- **Classes** delivered in the order and at the time your workforce is ready to maximize retention
- **Mentoring** to provide that deeper understanding of the knowledge element of competencies
- **Work experience** plans to provide the skills and practice to develop skilled competencies
- **Coaching** to help in utilization of company resources
- A Program to bring it all together to minimize the time to competency of your workforce

Our Workforce Development Plans are custom designed, organized to meet the unique challenges of your locations needs.

Typical Programs that we have delivered and continue to successfully deliver:

- 27 Week, Mentoring, Coaching, Class Room Instruction, Work Place Projects, Competency Measurement
- 13 Week, intensive, at a facility, ½ day class room, ½ day plant support projects, major project assisted by distance coaching both before and after the 13 week in-plant sessions
- 2 year, 8 course, development program with on-the-job training assignments between classroom sessions

We can provide technical advisors, learning development advisors and subject matter experts to help you develop a program suited to your needs. Our programs are focused to provide the training, mentoring and work experiences that decrease your team’s time to competency.

Campbell’s Workforce Development Model

- 0-3 years – New hires come from many backgrounds. A program of basic topics, chosen by you, is delivered in a consistent pattern, often coupled with a mentoring program using your internal SME’s or JMC’s deeply experienced instructor/mentors.
- 3-6 years – During this time, major career development takes place as your technical personnel find their niche and develop their specialties. Many JMC learning strategies are used during this time: public courses, In-House customized courses, mentoring and distance learning. Individual tracking of the career path of each of your employees is available.
- 6+ years – This is the period when career contributions are made as established engineers, operators and other technical personnel. But training doesn’t stop; your workforce may need supervisory and mentoring skill development as they take on more responsible roles and lead others.

JMC has been developing the industry’s technical professionals for 42 years! We can work with you, too. Email us at jmcsupport@jmcampbell.com or call us at 405-321-1383 with your workforce development challenges and we will work with you to create a solution.
Put Your Career on the FastTrack

John M. Campbell & Co. Facilities FastTrack Courses are designed to quickly build competency in onshore and offshore Facilities Engineers.

For today's Facilities Engineer a wide range of competencies are necessary to succeed in a competitive job market. Skills are needed in all aspects of facilities including transportation, offshore structures, process/utility systems and equipment, measurement and control, electrical systems, flow assurance, materials, corrosion, and solids handling.

To quickly develop these competencies and build "broad-based" Facilities Engineers, an integrated and flexible training program is necessary. John M. Campbell & Co. has developed the Facilities FastTrack programs to help you quickly develop competency as a Production Facilities Engineer, Gas Processing Engineer, Offshore Engineer or Pipeline Engineer.

For more details see the Progression Matrices on pages 5-8.
The Gas Processing discipline covers equipment and processes primarily focused on the handling of natural gas and its associated liquids. The wellhead is the starting point, ending with delivery of the processed gas, meeting the required specifications, into a sales gas or reinjection pipeline. Recovered natural gas liquids (NGL), again meeting the required specifications, are delivered to an export point – either a pipeline or storage facility. The NGL may be fractionated into individual specification products or sold as a mix for fractionation elsewhere. Waste byproducts are disposed of in accordance with the applicable regulatory requirements. Main topics covered include: fundamentals, natural gas characterization, phase behavior, vapor – liquid equilibrium, basic thermodynamics, and water – hydrocarbon behavior and all the key equipment to process natural gas. Campbell Training delivers competency based training in these and other areas, at progressive levels to provide the skills necessary to successfully support the operation of oil and gas production processes.

Gas Processing Engineer Course Progression

Example of recommended courses to develop a Gas Processing Engineer over a 3-year span.

A 3-year progression for a Gas Processing Engineer would begin with the Gas Conditioning and Processing (G-4) course. For broader knowledge, these are recommended. Additional courses offer further depth in developing competencies.
Testimonials

“I loved the key learning points sessions! I loved the close follow-up and familiarity with the text book. I really liked the exercises and the frequent breaks to keep fresh and alert. And of course the instructor’s positive and highly encouraging attitude.”

Mirna S.
G-4 Participant

“The books given were excellent. The discussions were very informative. The best thing about the course was I could relate to the instructors. They helped a lot and imparted their vast experiences to us. It helped solve some problematic issues.”

M. Riaz
G-4 Participant

“This course was by far the best course I have attended in my career so far. John Morgan’s delivery of the course was excellent & I would rate him as one of the best lecturers I’ve ever had (which is taking into account school, university and other occupational training courses).”

Chris L.
G-4 Participant

Gas Conditioning and Processing (G-4)

COURSE LEVEL Intermediate

DURATION 10 Days

DESIGNED FOR
Production and processing personnel involved with natural gas and associated liquids to acquaint or reacquaint themselves with gas conditioning and processing unit operations. This course is for facilities engineers, process engineers, operations personnel, field supervisors and others that select, design, install, evaluate or operate gas processing plants and related facilities.

YOU WILL LEARN
• About the selection and evaluation processes used to dehydrate natural gas, meet hydrocarbon dew point specifications and extract NGLs
• How to apply physical/thermodynamic property correlations and principles to the design and evaluation of gas processing facilities
• Equipment sizing methods for major process equipment
• To recognize and develop solutions to operating problems and control issues in gas processing facilities

ABOUT THE COURSE
The “Campbell Gas Course™” has been the standard of the industry for forty years. Over 30,000 engineers have attended our G-4 program, considered by many to be the most practical and comprehensive course in the oil and gas industry. Both hand-methods and computer-aided analysis are used to examine sensitivities of technical decisions. To enhance the learning process, about 30 problems will be assigned, reviewed and discussed throughout the course.

COURSE CONTENT
• Gas processing systems
• Physical properties of hydrocarbons
• Qualitative phase behavior
• Vapor-liquid equilibrium
• Water-hydrocarbon phase behavior
• Basic thermodynamic concepts
• General system energy changes and rate processes
• Process control fundamentals
• Fluid hydraulics
• Separation equipment
• Heat transfer
• Pumps
• Compressors
• Refrigeration
• Fractionation/distillation
• Glycol dehydration
• Adsorption systems

See sample course outline and daily schedule on page 18.

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>31-JAN-11-11-FEB</td>
<td>$8,730</td>
</tr>
<tr>
<td>HOUSTON</td>
<td>7-18-FEB</td>
<td>$6,780</td>
</tr>
<tr>
<td>DOHA</td>
<td>20-FEB-3-MAR</td>
<td>$8,250</td>
</tr>
<tr>
<td>STAVANGER</td>
<td>7-18-MAR</td>
<td>$8,730</td>
</tr>
<tr>
<td>CALGARY</td>
<td>2-13-MAY</td>
<td>$6,780</td>
</tr>
<tr>
<td>KUALA LUMPUR</td>
<td>23-MAY-3-JUN</td>
<td>$8,210</td>
</tr>
<tr>
<td>ABERDEEN</td>
<td>20-JUN-1-JUL</td>
<td>$8,730</td>
</tr>
<tr>
<td>DENVER</td>
<td>11-22-JUL</td>
<td>$6,920</td>
</tr>
<tr>
<td>PERTH</td>
<td>1-12-AUG</td>
<td>$8,440</td>
</tr>
<tr>
<td>HOUSTON</td>
<td>12-23-SEP</td>
<td>$6,920</td>
</tr>
<tr>
<td>ABERDEEN</td>
<td>19-30-SEP</td>
<td>$8,730</td>
</tr>
<tr>
<td>ORLANDO</td>
<td>7-18-NOV</td>
<td>$6,920</td>
</tr>
<tr>
<td>STAVANGER</td>
<td>7-18-NOV</td>
<td>$8,730</td>
</tr>
<tr>
<td>CAIRO</td>
<td>3-14-DEC</td>
<td>$8,250</td>
</tr>
</tbody>
</table>
SAMPLE COURSE OUTLINE

Considered by many to be the most practical and comprehensive course in the oil and gas industry, the “Campbell Gas Course™”, has been attended by over 30,000 engineers. The standard of the industry for well over thirty (30) years, Gas Conditioning and Processing (G-4) deals with the practical planning, design, specification and operation of gas processing and production systems.

For schedule and tuition information, see page 17

<table>
<thead>
<tr>
<th>DAY 1</th>
<th>DAY 2</th>
<th>DAY 6</th>
<th>DAY 3</th>
<th>DAY 4</th>
<th>DAY 8</th>
<th>DAY 5</th>
<th>DAY 7</th>
<th>DAY 9</th>
<th>DAY 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPTS</td>
</tr>
<tr>
<td>Introduction to gas processing; gas and liquid contracts and specifications; gas process systems and options; physical properties of hydrocarbon fluids; and phase behavior.</td>
<td>Principles of vapor-liquid equilibrium; K-values; dewpoints; bubblepoints; flash calculations; water content of natural gas; and hydrates.</td>
<td>Heat Exchangers - Overview, design and specification, shell and tube, plate, plate fin, heaters, cooling towers, and aerial coolers; pump principles; power and head; NPSH evaluation of pump performance and system curves; positive displacement and centrifugal pumps; and pump control.</td>
<td>Hydrate inhibition with glycols and alcohols, low dosage; energy balances; energy and power; enthalpy/entropy; tables of data; and general correlations for enthalpy and entropy.</td>
<td>Control modes (proportional, reset, derivative); valve characteristics; DCS and PLCs; flow measurement; examples of control applications, including liquid and gas flow, looped systems, complex systems and 2 phase horizontal and vertical flow.</td>
<td>Fractionator operation, design and specification; mass transfer fundamentals; minimum reflux theoretical plates; overall efficiency; energy balances; and oil stabilizers.</td>
<td>Pressure vessel design; principles of separation; vessel sizing - vertical and horizontal, two/three phase; mist extraction; internals and specification; principles of rate processes; series and parallel resistance; and fundamentals of heat transfer.</td>
<td>Overview and principles of compression including reciprocating and centrifugal compressors, power consumption, performance curves, axial compressors, compressor drivers and compressor control; principles of refrigeration including pressure vs. enthalpy charts, basic simple refrigeration cycle, economizer systems, power consumption, condenser load and mixed refrigerants; LTS/LTX processes; and turboexpanders.</td>
<td>Operation and design of adsorption dehydration systems; properties of desiccants; sizing tower; regeneration requirements; and hydrocarbon recovery units.</td>
<td></td>
</tr>
<tr>
<td>Course Introduction</td>
<td>• Vapor-Liquid Equilibrium</td>
<td>• Heat Transfer</td>
<td>• Water-Hydrocarbon Behavior</td>
<td>• Fluid Flow</td>
<td>• Compressors</td>
<td>• Separation Equipment</td>
<td>• Physical Properties of Hydrocarbons</td>
<td>• Refrigeration</td>
<td>• Glycol Dehydration</td>
</tr>
<tr>
<td>• Gas Processing Systems</td>
<td>• Physical Properties of Hydrocarbons</td>
<td>• Pumps</td>
<td>• Qualitative Phase Behavior</td>
<td>• Consolidated Problem. NGL extraction for HC dewpoint control and hydrate inhibition.</td>
<td>• Refrigeration/Fractionation Exercise</td>
<td>• Rate Processes</td>
<td>• Phase Envelopes and Flash Calculations</td>
<td>• Refrigeration/Fractionation Exercise</td>
<td>• Glycol Dehydration (Cont’d)</td>
</tr>
<tr>
<td>• Course Overview</td>
<td>• Refrigeration</td>
<td>• glycol unit operation and design</td>
<td>• Glycol Dehydration</td>
<td>• Fractionation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Course schedule is approximate and may be adjusted for location and participant interest.</td>
<td>• NGL extraction for HC dewpoint control and hydrate inhibition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G-4 is an intensive course and classroom hours are generally longer than a typical training course. Extended sessions are sometimes used for additional problems, exercises and syndicate work.
Overview of Gas Processing - Non-Technical (G-1)

COURSE LEVEL Basic

DURATION 2 Days

DESIGNED FOR
General administration, supervisory, non-technical management personnel, as well as anyone that could benefit from a broad overview of important aspects of the gas processing industry.

YOU WILL LEARN
• Oil and gas facilities terminology
• Fundamentals of commercial and contract issues
• Key areas in oil and gas production surface facilities
• How gas is transported and sold
• Non-technical fundamentals of technology and processes
• Why various treatment processes and technologies are selected for differing gas compositions and processing applications
• Markets and uses for natural gas liquids

ABOUT THE COURSE
This course is designed for a broad non-technical audience. While the course is intended to be interactive and participatory, most technical calculations are eliminated and use of technical terminology is minimized.

COURSE CONTENT
• Basic concepts & fundamentals of natural gas
• Industry overview
• Natural gas composition and specifications
• Production facilities
• Gas properties and behavior
• Gas flow fundamentals
• Natural gas treating
• Overview of sulfur recovery and disposal
• Gas dehydration
• Conditioning and processing of natural gas
• Liquid product fractionation and treating
• Gas compression
• Transportation systems

Overview of Gas Processing - Technical (G-2)

COURSE LEVEL Basic

DURATION 3 Days

DESIGNED FOR
Geologists, reservoir engineers, line managers, operational staff, shift foremen, those new to the industry such as entry-level engineers, as well as anyone interested in a general, technically oriented overview of the gas processing industry.

YOU WILL LEARN
• Oil and gas facilities terminology
• How gas processing fits into the value chain for hydrocarbon products
• About key commercial and contract issues
• How gas is transported and sold
• The difference between various gas conditioning and processing technologies
• Why various treatment processes and technology are selected for differing gas compositions and processing applications
• Principles of gas measurement and common measurement devices
• Markets and uses for NGL, LPG, ethane, propane and butane
• Key pieces of equipment used in natural gas production and processing facilities

ABOUT THE COURSE
This course is designed for a broad technical audience. It is participative and interactive, and utilizes fundamental technical exercises and terminology to communicate key learning points.

COURSE CONTENT
• Industry overview
• Gas processing fundamentals
• Terminology
• Chemistry of oil and gas
• Markets, gas contracts and specifications
• Technical fundamentals, e.g. physical properties and phase behavior
• Oil and gas production facilities
• Hydrates, hydrate inhibition
• Gas dehydration
• Gas sweetening and sulfur recovery
• Acid gas reinjection
• Natural gas liquids and dew point control
• Nitrogen rejection and helium recovery
• Fractionation and stabilization
• Heat exchange and compression
• Gas transportation options
• Emerging technology

LNG Short Course: Technology and the LNG Chain (G-29)

COURSE LEVEL Basic

DURATION 5 Days

DESIGNED FOR
Technical, engineering and operations staff, as well as commercial and management staff who require a technical overview of the LNG industry.

YOU WILL LEARN
• LNG industry review, technology
• LNG facilities world-wide
• A survey of commercial and contractual issues
• About project costs, feasibility and development
• Some fundamentals of gas technology
• To apply knowledge of LNG gas pretreatment, drying and refrigeration
• To describe liquefaction technologies and appreciate the differences
• The types of compressor drivers, gas turbines and electric motors
• About LNG storage, shipping and terminals

ABOUT THE COURSE
Technical LNG basics are covered in this intensive short course. It provides an overview of the technology in the LNG chain. The course covers facility operation topics, technical and design issues. Key commercial issues are also discussed. Selected exercises and syndicates are used throughout the course. In-House versions are available with either increased technical and operational emphasis or increased project and development emphasis.

COURSE CONTENT
• Introduction to LNG
• Commercial issues
• Technical fundamentals
• Gas processing basics
• Major equipment
• Refrigeration and LNG liquefaction
• Shipping
• LNG storage
• Regasification terminals and energy recovery
• Future trends in LNG

2011 Schedule and Tuition

LONDON
29-31 MAR. US $3,400
HOUSTON
16-18 AUG. US $2,490
KUALA LUMPUR
14-16 NOV. US $3,320

2011 Schedule and Tuition

LONDON
23-27 MAY US $3,400
PERTH
25-29 JUL US $3,670
KUALA LUMPUR
24-28 OCT US $3,320

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
Prevent the Preventable

Referencing historical incidents and recurring problem areas, Process Safety Engineering (PS-4) provides an overview of process safety engineering fundamentals for hydrocarbon processing facilities, with emphasis on the upstream oil & gas sector. The key aim is to achieve a measured approach to Process Safety Engineering.

In this course you will learn about the types of equipment and process systems that have historically been problematic; the basics of risk analysis; the most commonly used process hazards analysis methods and where they are used; and detection and mitigation methods for different types of hazards.

Exercises and group projects will be utilized throughout the course to emphasize the key learning points.

For more information see the course description on this page.

Scan the QR code with your smartphone to view an informative video and find out more about this course.

Or visit: www.jmcampbell.com/ps4
COURSE CONTENT
- Key points in other LNG liquefaction technologies
- Fundamentals of propane and propane pre-cooled, mixed refrigerant systems used in LNG plants
- Mixed refrigerant systems used in LNG plants
- Technical fundamentals, property correlations, phase behavior and applied thermodynamics
- Hydrocarbon phase behavior
- Applied thermodynamics
- Physical properties of hydrocarbons
- Gas processing systems
- Gas processing fluid fundamentals and applications to solve practical problems.

YOU WILL LEARN
- Technical fundamentals, property correlations, phase behavior and applied thermodynamics
- Hydrocarbon phase behavior
- Applied thermodynamics
- Physical properties of hydrocarbons
- Gas processing systems
- Gas processing fluid fundamentals and applications to solve practical problems.

ABOUT THE COURSE
This is the LNG-industry version of our popular G-4 course with expanded coverage on refrigeration. The course includes in-depth information on basic LNG gas conditioning and processing. Instructors will explain the acid gas removal processes (various amines, hot carbonate, Sulfinol, etc.) employed in LNG processes. Relevant details of both the mixed refrigerant and cascade processes in LNG liquefaction are described. Versions of this course have been taught in many of the world’s base-load and peak-shaving LNG plants.

COURSE CONTENT
- Basic technology principles
- Water-hydrocarbon system behavior
- Hydrates
- Thermodynamics of LNG processes
- Separation equipment
- Gas treatment, CO₂ and H₂S removal
- Dehydration of natural gas
- Heat transfer and exchangers
- Pumps and compressors
- Refrigeration systems
- LNG liquefaction technologies
- Fractionation and adsorption
- Course summary and overview

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
Gas Treating and Sulfur Recovery (G-6)

COURSE LEVEL Intermediate

DURATION 5 Days

DESIGNED FOR
Production and processing personnel involved with natural gas treating and sulfur recovery requiring an understanding of the principles of these process operations. This course is for facilities engineers, process engineers, operations personnel, field supervisors and others who select, design, install, evaluate or operate gas sweetening and sulfur recovery facilities.

YOU WILL LEARN
- Evaluation and selection of processes to remove acid gases (H₂S, CO₂, COS, CS₂, mercaptans, etc) from gas and NGLs
- The advantages and disadvantages of available gas treating technology and processes
- How to estimate solvent circulation rates, energy requirements and equipment sizes
- Recognize and evaluate solutions to common problems
- Sulfur recovery technologies, including an overview of the Claus Sulfur process
- How to select the proper sulfur recovery process given differing process conditions

ABOUT THE COURSE
This course emphasizes process selection, practical operating issues, technical fundamentals, and integration of the sweetening facilities into the overall scheme of gas processing. Sulfur recovery and tail gas processes are also covered including standard Claus configurations, SuperClaus®, EuroClaus®, SCOT® etc. Special design and operation topics such as trace sulfur compound handling and the importance of H₂S:CO₂ ratio is covered. Related topics such as liquid product treating, corrosion, materials selection and NACE requirements will also be reviewed.

COURSE CONTENT
- Gas specifications and process selection criteria
- Generic and specialty amine treating
- Proprietary amine solvents such as Sulfinol® and Flexsorb®
- Carbonate processes
- Physical absorption processes, e.g. Selexol®
- Metallurgical issues – corrosion
- Other technologies and new developments
- Selective treating
- Solid bed and non-regenerable treating; scavengers
- Liquid product treating
- Sulfur recovery processes
- Tail gas clean-up: SCOT-type, CBA and others
- Course workshop and summary

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON</td>
<td>14-18 MAR</td>
<td>US $3,350</td>
</tr>
<tr>
<td>LONDON</td>
<td>31-OCT-4-NOV</td>
<td>US $4,970</td>
</tr>
</tbody>
</table>

Process Simulation in Gas Conditioning and Processing (G-7)

COURSE LEVEL Specialized

DURATION 5 Days

DESIGNED FOR
Engineers involved in simulation modeling of natural gas and liquids processing facilities who have completed our Gas Conditioning and Processing course (G-4) or comparable training.

YOU WILL LEARN
- Recognize and appreciate the capabilities and limits of process simulators in the design and evaluation of production/processing facilities
- How to develop models to solve several real problems using commercial simulation packages
- Work independently to apply process simulations to profitably design new facilities or evaluate existing facilities

ABOUT THE COURSE
This extension of the Gas Conditioning and Processing (G-4) and Process/Facility Fundamentals (G-40) courses provides practical knowledge about using computers to solve operating problems more effectively and efficiently. Detailed discussions cover strengths, limitations and pitfalls of the calculation procedures used for the specification, design and operation of production processing facilities. Since most calculations are now made on a computer. This should be considered a required course in the normal training program for technical personnel. This course is presented using commercial simulator packages. The primary objective is to teach the participant how to work more effectively as an engineer using a commercial simulator package as a tool. Familiarity with the simulation package used in the course is a prerequisite. The course is normally taught using UNISIM® or Promax®, but arrangements can be made with the instructor to use other packages as well.

COURSE CONTENT
- Overview of computer simulation as a tool in the management of engineering as it relates to the design, selection and operation of oil and gas production
- Equations of state and their application
- Calculation of thermodynamic properties
- Gas compression
- Preparation of a compressor train flow sheet
- Preparation of production train flow sheet with recyclers and equipment sizing
- NGL recovery processing
- Preparation of offshore dew point control flow sheet
- Characterization of the C6+ fraction
- Preparation of offshore dew point control flow sheet with emphasis on the potential risk of improper feed characterization
- Fractionation/distillation
- Modeling a fractionation train for multiple product specifications
- Fluid hydraulics
- Modeling a piping system with both pumps and compressors

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON</td>
<td>11-15 APR</td>
<td>US $3,770</td>
</tr>
</tbody>
</table>

Connect with Campbell

Follow us on Twitter: www.twitter.com/johnmcampbell

View informative video on YouTube: www.jmcampbell.com/youtube

Interact with industry peers and instructors on the Campbell Forums: www.campbellforums.com

Perform gas processing conversion calculations on the go with GCAPmobile. Download it at: www.jmcampbell.com/mobile
Designed for managers, engineers, technicians and system operators, this 5-day course provides an overview of electrical power generation and distribution, process and safety systems instrumentation, and control strategies and configurations. The focus is on application and integration into the process and control of upstream and midstream oil and gas facilities. The material of the course is applicable to field production facilities, pipelines, gas plants, and offshore systems.

Participants will learn about:

- Key electrical power considerations and fundamentals applied in oil and gas facilities.
- Voltage levels and power type (3-phase, single-phase, and direct current) selection and application.
- Purchased power considerations including generation efficiency, redundant sources, transmission grid parameters, and cost considerations.
- Electric power distribution, systems loads, internal grid layout, major distribution equipment and cabling.
- Power users definition and integration into the power distribution system.
- Electrical system safety.
- Process systems operations and the key characteristics, and measurement needs, as well as techniques to measure and control.
- Control modes and their applications, communications requirements, and the operator and computer controller interface.
- Interrelationships between process, equipment, instruments and controls.
- Field (facility) control and monitoring systems such as pressure and level indicators and controllers.
- Field (facility) safety monitoring and response systems including SIS, HIPPS and emergency shutdown valves.
- System-wide considerations including communications, local control, remote control, and data management and use.

See the course description and schedule for this course on page 34.

Scan the QR code with your smartphone to view an informative video and find out more about this course.

Or visit www.jmcampbell.com/ice21
Production Facilities separate the well stream into three phases – oil, gas and water – and process these phases into marketable products or dispose of them in an environmentally acceptable manner. Gas handling/processing facilities are a major part of Production Facilities, and are covered in detail as Gas Processing in this catalog. Production Facilities, as used here, will mainly include:

- Single-well, satellite & central tank batteries, including:
 - Oil treating
 - Stabilization
 - Separation equipment
 - Desalting
 - Storage
- Produced water treating facilities
- Offshore topsides facilities
- Water injection facilities
- Corrosion management

Production Facilities Engineer Course Progression

Example of a recommended courses to develop a Production Facilities Engineer over a 3-year span.

A 3-year progression for a Production Facilities Engineer would begin with the Oil Production and Processing (PF-4) course.

Additional courses offer further depth in developing competencies.

For broader knowledge, these are recommended.

Example of a Production Facilities Engineer Progression
COURSE CONTENT

- Overview of upstream oil and gas production operations, both onshore and offshore. The chemistry of the main water related problems of mineral scales, corrosion, bacteria, and oil/water will be reviewed both from the theoretical and practical aspects. Produced water treatment equipment and typical water quality specifications will be reviewed as well as water injection and disposal systems. An exercise will be given to identify typical system problems and you will be able to apply the knowledge you gained to propose solutions. Emphasis will be placed on understanding and resolving operational problems in process equipment.

- Water chemistry fundamentals
- Water sampling and analysis
- Water formed scales
- Corrosion control
- Water treatment microbiology
- Produced water discharge/disposal and treatment principles
- Produced water treatment equipment – theory of operation, advantages and disadvantages, and the importance of oil droplet size
- Water injection and disposal systems – theory of operation, corrosion, scale, and biological control
- Case study

ABOUT THE COURSE

This course provides an overview of the main water handling systems typically encountered in upstream (E&P) production operations, both onshore and offshore. You will learn how to recognize and develop solutions to operating problems in oil/water processing facilities.

YOU WILL LEARN

- The basics of oilfield water chemistry
- How to monitor and control corrosion, scale, and bacterial growth in produced water and water injection/disposal systems
- How to implement system surveillance programs to detect potential problems before system damage occurs
- Produced (oily) water treatment options and related treatment equipment
- How to use the knowledge gained to identify typical system problems and be able to propose solutions

DURATION 5 Days

COURSE LEVEL Basic

DESIGNED FOR

Managers, engineers, chemists, and operators needing to understand water related problems in oil and gas production and their solutions.
The emphasis of this course is on oil production facilities – from the wellhead to the delivery of a specification crude oil product to the refinery. Both onshore and offshore facilities will be discussed. This course is intended to be complementary to the G-4 Gas Conditioning and Processing course which is focused on the gas handling side of the upstream oil and gas facilities area.

For schedule and tuition information, see page 25

Sample Course Outline

<table>
<thead>
<tr>
<th>Course</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
<th>TOPICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Production and Processing Facilities (PF-4)</td>
<td>Course Outline</td>
<td>TOPICS</td>
<td>Crude Oil Flow Measurement</td>
<td>Emulsions; Definition, causes and characterization</td>
<td>Oil Storage & Vapor Recovery</td>
<td>Oil Treating</td>
<td>Water Injection Systems</td>
<td>Solution Gas Handling</td>
<td>Day 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Course introduction</td>
<td>• Types, accuracy and selection of liquid and gas meters</td>
<td>• Types equipment used</td>
<td>• Oil Storage & Vapor Recovery</td>
<td>• Oil treating methods</td>
<td>• Typical flow diagrams and equipment</td>
<td>• Sales gas specifications, sweetening, dehydration, NGL recovery, etc</td>
<td>Day 2 & 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reservoir Traps, Rocks & Drive Mechanisms; Porosity & Permeability, Drive Mechanisms</td>
<td>• Fired Equipment – Direct & Indirect fired heaters</td>
<td>• Feed pipe and inlet devices</td>
<td>• Oil Storage & Vapor Recovery</td>
<td>• Heat input requirements</td>
<td>• Causes of overpressure</td>
<td>• Compressors</td>
<td>Day 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phase Envelopes & Reservoir Fluid Classification; Phase behavior of different reservoirs</td>
<td>• Pipeline Transportation of Crude Oil</td>
<td>• Gas gravity separation section</td>
<td>• Desalting</td>
<td>• Typical flow diagrams and equipment</td>
<td>• Types of relief valves & sizing; Flare system components</td>
<td>• Types of compressors & applications</td>
<td>Day 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Well Inflow Performance; Inflow performance curve & Effect on facilities</td>
<td>• Bernoulli’s equation, friction loss and piping codes</td>
<td>• Artificial Lift: When it is required, Types and selection of artificial lift</td>
<td>• Why desalt? → crude oil salt specifications</td>
<td>• Relief & Flare Systems</td>
<td>• Radiation calculations</td>
<td>• Course Wrap-up</td>
<td>Day 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Artificial Lift: When it is required, Types and selection of artificial lift</td>
<td></td>
<td>• Oil, Gas & Water – Composition & Properties</td>
<td>• Overview of desalting, processes, sizing and selection</td>
<td>• Causes of overpressure</td>
<td>• Flare gas recovery</td>
<td></td>
<td>Day 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oil, Gas & Water – Composition & Properties</td>
<td></td>
<td>• Calculation of properties needed for equipment sizing</td>
<td>• Crude Oil Stabilization & Sweetening</td>
<td>• Types of relief valves & sizing; Flare system components</td>
<td></td>
<td></td>
<td>Day 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Calculation of properties needed for equipment sizing</td>
<td></td>
<td></td>
<td>• Crude Oil Stabilization & Sweetening</td>
<td></td>
<td></td>
<td></td>
<td>Day 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Day 10</td>
</tr>
</tbody>
</table>

Note: Course schedule is approximate and may be adjusted for location and participant interest.
2011 Schedule and Tuition

ORLANDO
14-18 NOV US $3,455

HOUSTON
17-21 OCT US $3,455

KUALA LUMPUR
5-9 SEP US $4,490

DENVER
6-10 JUN US $3,140

DURATION 5 Days

COURSE LEVEL Foundation

HEAT TRANSFER EQUIPMENT (PF-43)

DESIGNED FOR
Engineers and senior operating personnel involved in the design, specification, or operation of heat transfer equipment.

YOU WILL LEARN
- Typical process heating & cooling applications
- Fluid properties
- Heat transfer principles
- Shell and tube exchangers
- Compact heat exchangers
- Plate–frame
- Printed circuit
- Welded plate
- Brazed aluminum exchangers
- Air coolers
- Fired equipment (furnace type & fire-tube)
- Operating problems
- Typical instrumentation control schemes

COURSE CONTENT
- About the typical instrumentation and control schemes used by the various types of heat transfer equipment
- Evaluate the performance of heat transfer equipment
- Select the correct heat transfer equipment for a particular application
- Determining set/relieving pressures to meet operational, safety and Code requirements
- Operational considerations of maintenance, testing, certification, and disposal of fluids
- Designing and operating relief and flare header systems considering fluid characteristics, service conditions, volumes, gas dispersion and radiation
- Determining requirements, selecting and sizing the components of a relief/flare system such as knockout drums, flare stack and tips, pilot and ignition systems

ABOUT THE COURSE
This course reviews the selection, basic design, and operation of heat transfer equipment commonly used in the oil and gas industry with focus on E&P production facilities. Heat transfer equipment discussed will include shell and tube exchangers, compact heat exchangers, brazed aluminum exchangers, air coolers, and fired equipment (fire-tube and direct-fired).

DURATION 5 Days

COURSE LEVEL Foundation

RELIEF AND FLARE SYSTEMS

DESIGNED FOR
Engineers & senior operating personnel responsible for designing, operating and maintaining relief and flare systems in oil and gas facilities.

YOU WILL LEARN
- Purposes of relief and flare systems and their importance in safe operations
- Causes of overpressure and the ways to control/mitigate
- Defining the relief cases considering operations, upset/abnormal conditions and emergency situations (such as fire)
- Commonly used pressure relieving devices and how to select and size these devices
- Determining set/relieving pressures to meet operational, safety and Code requirements
- Operational considerations of maintenance, testing, certification, and disposal of fluids
- Designing and operating relief and flare header systems considering fluid characteristics, service conditions, volumes, gas dispersion and radiation
- Defining requirements, selecting and sizing the components of a relief/flare system such as knockout drums, flare stack and tips, pilot and ignition systems

ABOUT THE COURSE
This course deals with the design, operation and optimization of onshore gas gathering systems and their associated field facilities, from the wellhead to the central gas processing facility. From a design perspective, the main variables that impact the flexibility and operational characteristics of an onshore gas gathering system will be discussed. Typical operating problems will also be covered including hydrates, multiphase flow issues, corrosion, declining well deliverability, etc. Exercises will be utilized throughout the course to emphasize the key learning points.

COURSE CONTENT
- Gas well inflow performance & deliverability
- Overview of gas well deliquification methods for low-rate, low pressure gas wells
- Effect of gathering system/abandonment pressure on reserves recovery
- Impact of produced fluids composition
- Sweet/sour
- CO₂ content
- Rich/lean
- Produced water
- Hydrates and hydrate prevention
- Dehydration
- Heating
- Chemical inhibition
- Multiphase flow basics
- Corrosion/materials selection
- Gathering system layout
- Wellsite/field facilities options
- Provisions for future compression

2011 Schedule and Tuition

HOUSTON
7-11MAR US $3,140

DENVER
6-10JUN US $3,140

ORLANDO
14-18NOV US $3,455

DURATION 5 Days

COURSE LEVEL Foundation

HEAT TRANSFER EQUIPMENT (PF-45)

DESIGNED FOR
Production & facilities department engineers/senior operating personnel responsible for the design, operation and optimization of onshore gas gathering systems and their associated field facilities.

YOU WILL LEARN
- The impact of gathering system pressure on gas well deliverability
- The impact of produced fluids composition on gathering system design & operation
- Evaluate field facility & gathering system configurations for different applications
- Recognize and develop solutions to operating problems with existing gas gathering systems

ABOUT THE COURSE
This course deals with the design, operation and optimization of onshore gas gathering systems and their associated field facilities, from the wellhead to the central gas processing facility. From a design perspective, the main variables that impact the flexibility and operational characteristics of an onshore gas gathering system will be discussed. Typical operating problems will also be covered including hydrates, multiphase flow issues, corrosion, declining well deliverability, etc. Exercises will be utilized throughout the course to emphasize the key learning points.

COURSE CONTENT
- Gas well inflow performance & deliverability
- Overview of gas well deliquification methods for low-rate, low pressure gas wells
- Effect of gathering system/abandonment pressure on reserves recovery
- Impact of produced fluids composition
- Sweet/sour
- CO₂ content
- Rich/lean
- Produced water
- Hydrates and hydrate prevention
- Dehydration
- Heating
- Chemical inhibition
- Multiphase flow basics
- Corrosion/materials selection
- Gathering system layout
- Wellsite/field facilities options
- Provisions for future compression

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
PetroSkills Alliance member, The University of Trinidad and Tobago, established a successful relationship with John M. Campbell & Co. in 2006 for the exclusive delivery of Campbell courses in Tunapuna, Trinidad.

Current offerings include:

- Gas Processing
- Operations Management
- Operator Training
- Production Facilities
- Offshore
- Reliability
- Electrical, Instrumentation and Controls
- Refining
- Mechanical

For the most up-to-date pricing and schedule information, visit:

www.u.tt/peu
ATTENTION OFFSHORE ENGINEERS!

JOHN M CAMPBELL & COMPANY

PRESENTS AN IMPORTANT OFFSHORE COURSE COVERING:

- OIL AND GAS TRANSPORTATION FACILITIES
- STRUCTURAL DESIGN PROCESSES AND TOOLS
- CONSTRUCTION PLANS AND EXECUTION
- EFFECTS OF THE OCEAN ENVIRONMENT
 - FLOW ASSURANCE
 - TOPSIDE FACILITIES
 - RISER SYSTEMS
 - SUBSEA SYSTEMS
 AND MUCH MORE...

OS4

JOHN M CAMPBELL & CO PRESENTS OS 4 ... • OFFSHORE SYSTEMS OVERVIEW AND FIELD ARCHITECTURE SELECTION
• WELL CONSTRUCTION AND SERVICING EQUIPMENT AND OPERATION • PRODUCTION OPERATIONS • INFRASTRUCTURE IMPACT ON DESIGN AND OPERATIONS • INTRODUCTION TO NAVAL ARCHITECTURE • STRUCTURAL DESIGN PROCESSES AND TOOLS • PROJECT MANAGEMENT LESSONS LEARNED • LIFE-CYCLE AND DECOMMISSIONING CONSIDERATIONS

www.jmcampbell.com/OS4 HOUSTON LONDON SINGAPORE EKT EXTREME KNOWLEDGE TRANSFER
Campbell Training’s Offshore Discipline Team provides technical training and consulting for the complete life-cycle of offshore oil and gas systems; from exploration and development to decommissioning. The discipline curriculum includes courses that provide the students the knowledge to understand and participate in evaluating the major offshore development alternatives: fixed structures, floating systems and subsea systems. Other key elements stressed in all offshore courses include life-cycle costs, constructability, operability and interface management.

Offshore instructors have extensive real world experience managing offshore development projects, well construction and servicing, asset management and producing operations. Their broad knowledge blends the unique technical and operational issues of offshore into an integrated approach to enhance understanding of the full scope of offshore facilities.

Offshore Engineer Course Progression

Example of recommended courses to develop an Offshore Engineer over a 3-year span.

1. A 3-year progression for an Offshore Engineer would begin with the Fundamentals of Offshore Design and Construction (OS-4) course.

2. Additional courses offer further depth in developing competencies.

3. For broader knowledge, these are recommended.

Year 1
- Process Safety Engineering (PS-4)
- Overview Of Subsea Systems (SS-2)
- Corrosion Management in Production/Processing Operations (PF-22)

Year 2
- Oil Production and Processing Facilities (PF-4)
- Piping Systems: Mechanical Design and Specification (ME-41)
- Flow Assurance for Pipeline Systems (PL-61)

Year 3
- Instrumentation, Controls and Electrical Systems for Facilities Engineers (ICE-21)
- Relief and Flare Systems (PF-44)
- Gas Conditioning and Processing (G-4)
- Project Management for Engineering and Construction (OM-22)
- Overview of Pump and Compressor Systems (ME-44)
- Fundamentals of Onshore and Offshore Pipeline Systems (PL-4)

2011 Facilities Training Catalog

All classes available at your location. Contact us today.
OVERVIEW OF OFFSHORE SYSTEMS (OS-21)*

COURSE LEVEL: Basic

DURATION: 4 Days

DESIGNED FOR
- Technical staff that are beginning or transitioning into the design, construction, and operation of subsea systems.
- Non-technical staff working with a subsea development team will benefit by developing an awareness of subsea systems.

YOU WILL LEARN
- Recognize the integrated nature of field architecture, system design, and component selection
- Identify appropriate applications for subsea systems
- Identify the main subsea components, their functions, strengths, weaknesses and interfaces from the well to the production facility
- Understand key design, construction, and installation issues
- Describe basic operating and maintenance considerations
- Understand the key steps from drilling through startup for the design, fabrication, testing, installation and operation
- Understand the importance of an integrated approach to design, flow assurance, installation, and life-cycle considerations

ABOUT THE COURSE
An overview of subsea components and how they are integrated into field architecture is provided during this 5-day course. Individuals will develop a basic understanding of the various subsea components used in all water depths, from relatively shallow to ultra deepwater. The participants will all learn how the components are integrated into subsea field developments which will accelerate learning and productivity. Installation and working underwater are emphasized as key drivers in subsea design. The course emphasizes a systems approach to design. Individual and group exercises are used throughout the course including a “red thread” exercise to develop field architecture recommendations, basic component selection, and high level project execution plans for a subsea development. Course instructors are experienced offshore managers.

COURSE CONTENT
- Applications for subsea systems
- Flow assurance considerations in system design and configuration
- Field architecture considerations
- Subsea component descriptions and functions
- Fabrication, testing, installation, commissioning, and operational issues
- Production, maintenance, and repair considerations

2011 SCHEDULE AND TUITION

LONDON

- 6-10 APR US $3,455
- 20-24 SEP US $3,455
- 6-10 DEC US $3,455

HOUSTON

- 25-29 SEP US $3,455
- 5-9 DEC US $3,455

SINGAPORE

- 21-25 MAY US $3,455
- 18-22 JUL US $4,490
- 26-30 SEP US $4,490

US $4,490
The Campbell Training’s Pipeline Discipline provides technical training and consulting for oil and gas transportation, focusing on pipeline systems as well as onshore infrastructure systems that support oil and gas operations. The discipline covers pipeline transportation systems, oil and gas terminals facilities, and the onshore infrastructure from regional considerations through design and construction of site specific systems. As with all PetroSkills/Campbell training programs, these discipline areas integrate with the other technical, operations and HSE disciplines.

The Campbell Instructors and consultants that support the Pipeline discipline have extensive real world – global experience from conceptual development through operations. Their broad knowledge blends the unique technical and operational issues of pipeline systems that transport all types of fluids – from heavy oils to refined products to high pressure injection gas and water - into integrated systems. This global experience spans the pipeline industry from initial site selection through detailed design and construction of unique facilities.

Pipeline Engineer Course Progression

Example of recommended courses to develop a Pipeline Engineer over a 3-year span.

A 3-year progression for a Pipeline Engineer would begin with the Fundamentals of Onshore and Offshore Pipeline Systems (PL-4) course.

For broader knowledge, these are recommended.

Additional courses offer further depth in developing competencies.

Example of an Pipeline Engineer Progression
Fundamentals of Onshore and Offshore Pipeline Systems (PL-4)

COURSE LEVEL Foundation

DURATION 10 Days

DESIGNED FOR Technical professionals new to the pipeline business or needing a broad understanding of the pipeline business including: pipeline project managers, pipeline engineers, facilities engineers, pipeline design and construction engineers, engineering and construction contractors.

YOU WILL LEARN
- How to apply mechanical and physical principles to all phases of pipeline design, construction, and operation
- Identify similarities and differences of onshore and offshore pipeline systems
- Incorporate construction methods, commissioning, pressure testing, and start-up into the design of a pipeline system
- Applying safety and environmental regulations for a sound design
- Common sense methods and technical requirements to define pipeline routes and facilities locations
- The importance of fluid properties and process to pipeline system design and construction

ABOUT THE COURSE
This intensive, ten-day foundation level course covers the design, construction, and operation of pipeline systems. The focus is on pipeline routing, hydraulics, mechanical design, and construction for both onshore and offshore pipelines. The result of this course is cost-effective, safe and environmentally sound design, construction, inspection, operation, and maintenance of pipelines. Design problems and group projects are an integral part of this course.

COURSE CONTENT
- Pipeline systems definition and applications
- Codes and standards related to pipelines
- Pipeline hydraulics: single-phase gas and liquids, multiphase fluids and heavy/waxy crudes
- Major design considerations for strength, stability, and installation
- Pipeline survey and mapping
- Pipeline route engineering
- Pipeline materials and components
- Corrosion and cathodic protection of pipelines
- Special design aspects, covering such issues as risers, slug catchers, pigging facilities, etc
- Basic design considerations for pipeline facilities
- Pipeline construction for cross country and offshore systems focusing on welding
- Pressure testing, pre-commissioning, and commissioning
- Pipeline integrity aspects including in-line inspection
- Leak detection and emergency planning considerations
- Repairs and modification considerations
- Safety, environmental, and regulatory requirements

2011 Schedule and Tuition

KUALA LUMPUR
- 9-20 MAY: US $7,070

DENVER
- 15-19 AUG: US $3,455

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
2011 Facilities Training Catalog

Instrumentation, Controls and Electrical Systems for Facilities Engineers (ICE-21)

COURSE LEVEL Basic

DURATION 5 days

DESIGNED FOR Managers, engineers, technicians and system operators requiring a broad understanding of instrumentation, control, and electrical systems in oil and gas facilities.

YOU WILL LEARN

Electrical Power
- Defining fundamentals parameters for electrical power usage and generation such as voltage levels, self-generated and purchased power, and basic electrical power management.
- Developing electrical power demand (load) lists, one-line diagrams, and the selecting and integrating power distribution systems.
- Identifying electrical power users (for the load list) then evaluating the equipment demand on the power system (such as intermittent or continuous service, and motor starting loads).
- Using safe practices such as hazardous area definition and circuit protection.

Instrumentation and Control
- Defining the measure, why measure a parameter and how to measure.
- Determining and using the many control strategies, equipment and computer systems common to an oil and gas facility.
- Identifying equipment and instrument characteristics and using appropriate instrumentation and controls.
- Defining and integrating components into systems that monitor and locally control the process (and related equipment), safety systems, and the communications and remote control systems use.

ABOUT THE COURSE
This 5-day course provides an overview of electrical power generation and distribution, process and safety systems instrumentation, and control strategies and configurations. The focus is on application and integration into the process and control of upstream and midstream oil and gas facilities. The material of the course is applicable to field production facilities, pipelines, gas plants, and offshore systems.

COURSE CONTENT
- Key electrical power considerations and fundamentals applied in oil and gas facilities.
- Voltage levels and power type (3-phase, single-phase, and direct current) selection and application.
- Purchased power considerations including generation efficiency, redundant sources, transmission grid parameters, and cost considerations.
- Electric power distribution, systems loads, internal grid layout, major distribution equipment and cabling.
- Power users definition and integration into the power distribution system.
- Electrical system safety.
- Process systems operations and the key characteristics, and measurement needs, as well as techniques to measure and control.
- Control model and their applications, communications requirements, and the operator and computer controller interface.
- Interrelationships between process, equipment, instruments and controls.
- Field (facility) control and monitoring systems such as pressure and level indicators and controllers.
- Field (facility) safety monitoring and response systems including SIS, HIPPS and emergency shutdown valves.
- System-wide considerations including communications, local control, remote control, and data management and use.

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>9-13 MAY</td>
<td>US $4,330</td>
</tr>
<tr>
<td>KUALA LUMPUR</td>
<td>5-9 SEP</td>
<td>US $4,490</td>
</tr>
</tbody>
</table>

Electrical Engineering Fundamentals for Facilities Engineers (E-3)

COURSE LEVEL Basic

DURATION 5 Days

DESIGNED FOR Facilities and Project Engineers as well as new Electrical, Instrumentation or Controls Engineers who need to improve their basic understanding of electrical systems within oil and gas facilities.

YOU WILL LEARN
- The key components of facilities electric power distribution which include circuit arrangements, wiring, cabling, terminations, conduit, low voltage boards, low and medium voltage switchgear, and single-phase and three phase schemes.
- Operation, components, electromotive forces, turns and voltage ratios, losses, efficiency, rating, and connections of transformers.
- The difference between direct current motors, alternating current motors, enclosures and how to select motors.
- Protection including fuses, direct tripping, relaying, and coordination.
- About emergency power to include power requirements, generator sets, direct current systems, distribution which include an overview of uninterruptible power supplies (UPS).
- Power generation which includes an overview of emergency, prime, base, peak and co-generation, quality, sizing, operation, control, and power factor correction.
- Grounding and bonding with an overview of systems, equipment, ignition sources, separately derived systems, performance, and substation grounding.
- Hazardous areas with general information on classifications, NEC, IEC, equipment protection, certification, and definitions.

ABOUT THE COURSE
This course applies fundamental electrical engineering principles to oil and gas facilities design and operation. The course is designed for Facilities Engineers with or without a background in electrical engineering and can accelerate the development of new Facilities Engineers. Through the use of individual and group problem solving, attendees will learn about transformers, motors, generators, one-line diagram interpretation, protection and coordination of electrical equipment, emergency power, direct current systems, uninterruptible power supplies, site and standby generation, variable speed drives, programmable electronic systems, electrical safety, grounding and bonding, lighting, and hazardous areas. Participants will gain a better understanding of electrical components and systems and will develop a greater appreciation for electrical engineering.

COURSE CONTENT
- Fundamentals of electricity.
- Direct current.
- Basic AC theory.
- Transformers.
- Motors.
- Power distribution.
- System protection and coordination.
- Emergency power generators, direct current systems and uninterruptible power systems.
- Power generation.
- Variable speed drives.
- Programmable electronic systems.
- Electrical safety.
- Grounding and bonding.
- Lighting.
- Hazardous areas.

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSTON</td>
<td>14-18 FEB</td>
<td>US $3,140</td>
</tr>
<tr>
<td>ORLANDO</td>
<td>24-28 OCT</td>
<td>US $3,455</td>
</tr>
</tbody>
</table>

Electrical Engineering Practices for Facilities Engineers (E-4)

COURSE LEVEL Foundation

DURATION 5 Days

DESIGNED FOR Facilities and Project Engineers with two or more years of experience; Electrical, Instrumentation or Controls Engineers with two or more years of experience, or those who have completed the E-3 course and need to further develop their understanding of electrical systems within oil and gas facilities.

YOU WILL LEARN
- Key principles in project management for electrical projects including basics, front end loading, scope definition, brown-field vs. green-field, engineering deliverables, roles and responsibilities, project planning, risk analysis and management, cost estimating, and procurement, construction, contractor and supplier management.
- Standards and recommended practices through an introduction to ANSI, API, CSA, CFR, IEC, IEEE, IES, IEEE, NEMA, NFPA.
- Electrical distribution systems including background, planning, voltage selection, and system protection.
- How to select, maintain and control DC and AC motors.
- The characteristics, properties, insulation, shielding, jacketing, short circuit capabilities, and references of wires and cables.
- Transformers which include operation, models, types, components, turns and voltage ratios, connections, losses, efficiency, ratings, application, selection, and safety.
- Medium and low voltage switchgear and motor control centers including specifications, maintenance, and distribution.
- Topics in faults and circuit protection including sensing devices, fuses, direct tripping devices, protective relaying, relaying schemes, major equipment protection, system relay coordination.
- Distribution, construction, fuses, circuit breakers, disconnects, grounding, types, and ratings of switchboards and panels.
- The systems and requirements of uninterruptible power supply (UPS) and emergency power in addition to an overview of generator set, ATSs, and batteries.
- Fault protection, system grounding philosophy, ungrounded systems, grounded systems, bonding, ignition sources, bonding techniques, separately derived systems, performance, and substation grounding.
- About North American and International classifications of hazardous areas in addition to NEC and IEC comparisons, extension of zones, equipment certification, and equipment protection methods.

ABOUT THE COURSE
This course applies Electrical Engineering principles to oil and gas facilities design and operation and requires some prior experience. Electrical Engineering principles are reinforced through the use of individual and team problem solving exercises, one-line diagram interpretation, coordination, interpretation, and class discussions of interfaces between facilities engineers, contractors and maintenance personnel. Participants gain additional understanding of electrical equipment requirements for facilities and what is important to the Electrical discipline.

COURSE CONTENT
- Electrical project management.
- Standards and recommended practices.
- Distribution systems.
- Motors.
- Wire and cable.
- Transformers.
- Switchgear.
- Motor control centers.
- Switchboards and panels.
- Electrical faults (short circuits) and circuit protection.
- UPS and emergency power.
- Electrical system ground and bonding.
- Hazardous area classification.

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
COURSE LEVEL: Foundation

DURATION: 5 Days

DESIGNED FOR

Facilities and Project Engineers as well as newly graduated Electrical, Controls and Instrument Engineers who need to improve their basic understanding of instrumentation and control systems within oil and gas facilities.

YOU WILL LEARN

- How to document instrumentation including tag numbers, P&IDs, loop and logic diagrams
- Final design activities that include authorization for procurement requirements, construction requirements, QA and QC requirements, commissioning to include procurement requirements, construction requirements, QA and QC requirements, commissioning, and suppliers management
- Final design activities that include authorization for equipment selection which will include area classification, NEC, IEC, equipment protection, selection, certification, location, and ingress

ABOUT THE COURSE

This course applies fundamental instrumentation and control engineering principles to oil and gas facilities design and operation and is designed for Facilities Engineers with or without a background in instrumentation or control engineering. The course is also designed to accelerate the development of new facilities Instrumentation and Control Engineers. Through the use of individual and group problem solving, attendees will learn about field measurement devices, final elements and actuators, pressure relief and pressure regulation, documentation, programmable logic controllers, power supplies, SCADA, DCS, SIS, hazardous areas, and installation methods. Participants will gain a better understanding of instrumentation and control components and systems and will gain a greater appreciation for instrumentation and control engineering.

COURSE CONTENT

- Fundamentals
- Field measurement devices
- Final elements and actuators
- Pressure relief and pressure regulation
- Instrumentation documentation
- Control system basics
- Programmable logic controllers
- Supervisory control and data acquisition (SCADA) systems
- Distributed control systems (DCS)
- Safety instrumented system (SIS)
- Hazardous areas and equipment selection

Piping Systems - Mechanical Design and Specification (ME-41)

COURSE LEVEL: Foundation

DURATION: 5 Days

DESIGNED FOR

Mechanical, facilities, plant or pipeline engineers and piping system designers who are involved in the design of in-plant piping systems for oil and gas facilities.

YOU WILL LEARN

- Basic principles of project management for instrumentation and control projects to include front-end loading, scope definition, fieldbus and SCADA systems
- How to work through a project with a brief introduction to the process of steelmaking, pipe manufacturing and material specifications
- How to specify proper components for process and utility applications
- Compare alternative materials of construction
- The process of steelmaking, pipe manufacturing and material specifications
- Joining methods and inspection techniques

ABOUT THE COURSE

This five-day foundation level course for engineers and piping system designers reviews the key areas associated with the design of piping systems for oil and gas facilities. The course is focused on four areas: codes and standards, pipe materials and manufacturing, piping components, and piping layout and design. Applicable piping codes for oil and gas facilities (ISO, B31.3, B31.4, B31.8, etc.), piping calculation, pipe installation, and materials selection are an integral part of the course. The emphasis is on proper material selection and specification of piping systems.

COURSE CONTENT

- Piping codes and standards (ANSI/ASME, API, ISO)
- Pipe materials and manufacturing
- Basic pipe stress analysis methods
- Valves and actuators
- Welding and non-destructive testing
- Pipe and valve material selection
- Piping layout and design
- Manifolds, headers, and flare/vent systems
- Non-metallic piping systems
- Operations and maintenance considerations of facilities and pipelines

Piping Systems - Mechanical Design and Specification (ME-41)

2011 Schedule and Tuition

HOUSTON

28-FEB-4-MAR US $3,140

LONDON

4-8-APR US $4,330

DENVER

25-29-JUL US $3,455

ORLANDO

17-21-OCT US $3,455

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
2011 Facilities Training Catalog

Overview of Pump and Compressor Systems (ME-44)

COURSE LEVEL: Foundation
DURATION: 5 Days

DESIGNED FOR
Engineers, senior technicians and system operators designing, operating and maintaining pump and compressor systems in oil and gas facilities.

YOU WILL LEARN
- Selecting the appropriate integrated pump and compressors units (drivers, pumps, compressors, and auxiliary systems).
- Integrating the pump or compressor units with the upstream and downstream piping and process equipment.
- Evaluating pump and compressor units and their drivers in multiple train configurations – parallel and series.
- Identifying the key local and remote control elements of pumps and compressors as well as their drivers.
- Defining the major life-cycle events such as changes in flows, changes in fluid composition, and changes in operating conditions that can affect equipment selection and operating strategies.
- Assessing the key pump hydraulics and compressor thermodynamics and their affect on selection and operations.
- Identifying significant operating conditioning monitoring parameters and troubleshooting techniques.

ABOUT THE COURSE
This is an intensive 5-day course providing a comprehensive overview of pumps and compressor systems. The focus is on equipment selection – type, unit and station configuration, integration of these units in the process scheme and control strategy in upstream and midstream oil and gas facilities. The material of the course is applicable to field production facilities, pipelines, gas plants, and offshore systems.

COURSE CONTENT
- Types of pumps, compressors, and drivers and their common applications and range of operations.
- Evaluation and selection of pumps and compressors and their drivers for long-term efficient operations.
- Unit and station configuration including multiple trains in series and/or parallel operations.
- Integration with upstream and downstream process equipment, local and remote control systems, and facilities utilities.
- Key auxiliary systems including monitoring equipment, heat exchangers, lube and seal systems, and fuel/power systems.
- Major design, installation, operating, troubleshooting, and maintenance considerations.

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>11-15-APR</td>
<td>US $4,330</td>
</tr>
<tr>
<td>HOUSTON</td>
<td>22-26-AUG</td>
<td>US $3,455</td>
</tr>
<tr>
<td>KUALA LUMPUR</td>
<td>5-9-DEC</td>
<td>US $4,490</td>
</tr>
</tbody>
</table>

Compressor Systems - Mechanical Design and Specification (ME-46)

COURSE LEVEL: Foundation
DURATION: 5 Days

DESIGNED FOR
Mechanical, facilities, plant, or pipeline engineers and technicians needing an in-depth understanding of the different types of compressors.

YOU WILL LEARN
- How to apply thermodynamics to compressor performance and operating characteristics.
- How to size, specify, and select compressors.
- Compressor auxiliary systems.
- Series and parallel application of compressors.
- How to integrate compressor systems into process facilities used in the oil and gas industry.
- How to use state-of-the-art monitor and control devices in the operation, maintenance, and troubleshooting of compression systems.
- How to apply maintenance practices to improve compressor reliability.
- Shop and field performance testing.
- Compressor economics including OPEX vs. CAPEX considerations.

ABOUT THE COURSE
This five-day foundation level course is for facility design engineers, operations engineers and technicians seeking an in-depth understanding of centrifugal, reciprocating, and screw compressors. This course provides basic knowledge of compressor types and associated auxiliary systems, mechanical design of equipment, operating and performance characteristics, control and monitoring systems, maintenance practices, and codes and standards.

COURSE CONTENT
- Types and application of compressors.
- Selection criteria of dynamic and positive displacement compressors.
- Compressor thermodynamics and operating characteristics.
- Performance curves and off-design evaluations.
- Key compressor components and other auxiliary systems.
- Equipment specifications.
- Compressor controls and monitoring devices.
- Driver and gear involvement.
- Installation, operation, maintenance practices, and troubleshooting.
- Economic considerations.

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>20-24-OCT</td>
<td>US $3,455</td>
</tr>
<tr>
<td>HOUSTON</td>
<td>3-7-OCT</td>
<td>US $3,455</td>
</tr>
<tr>
<td>ORLANDO</td>
<td>24-28-OCT</td>
<td>US $3,455</td>
</tr>
</tbody>
</table>

Turbomachinery Monitoring and Problem Analysis (ME-62)

COURSE LEVEL: Intermediate
DURATION: 5 Days

DESIGNED FOR
Experienced mechanical or facilities engineers and senior technicians needing an understanding of monitoring and troubleshooting turbomachinery.

YOU WILL LEARN
- How to evaluate turbine performance during startup and operation.
- How to identify turbomachinery system components.
- How to define and use appropriate monitoring techniques and tools.
- How to utilize effective operation and shutdown procedures.
- How to analyze common turbomachinery problems, such as vibration, temp/pressure operation and surge.
- How to solve instrumentation and control problems.
- Understand the inter-relationships of drivers, couplings, gearboxes, and driven equipment.
- Installation techniques, equipment failures and different maintenance practices.
- Economic considerations.

ABOUT THE COURSE
This five-day course is an intensive, intermediate level program for experienced mechanical equipment engineers to develop and expand their capabilities in monitoring and problem analysis of turbomachinery. This course focuses on defining the systems and subsystems that form the turbomachinery, the potential problems with these systems and subsystems, monitoring techniques for early detection of problems, and methods to analyze the monitored variables to detect potential problems or reconstruct reasons for failures. Case studies are used throughout the course.

COURSE CONTENT
- Gas turbine machinery - general description.
- Operating principles of gas turbines.
- Key performance variables and means to monitor.
- Major components of axial flow compressors: rotors, blades, shafts, combustion chambers, nozzles, etc.
- Auxiliary systems: lube oil, seal oil, fuel, start-up, etc.
- Evaluation of turbine performance parameters during start-up and normal operation.
- Troubleshooting control systems for gas turbines: start-up, speed and temperature controls, vibration.
- Principles of operation and general components of compressors: rotors, seals, diaphragms, etc.
- Operating characteristics curves.
- Surging phenomenon.
- Choking phenomenon.
- Compressor instrumentation: various control loops; anti-surge control loops.
- Compressor safety interlock and trip systems.
- Gas turbine and compressor systems start-up procedures.
- Normal operation - monitoring of parameters.
- Shutdown procedures.
- Logging of monitoring checks.
- Vibration monitoring.
- Troubleshooting.

2011 Schedule and Tuition

<table>
<thead>
<tr>
<th>Location</th>
<th>Dates</th>
<th>Tuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONDON</td>
<td>23-27-MAY</td>
<td>US $4,330</td>
</tr>
<tr>
<td>HOUSTON</td>
<td>2-6-OCT</td>
<td>US $3,455</td>
</tr>
</tbody>
</table>

All classes available at your location. Contact us today.
DESIGNED FOR
Maintenance supervisors, team leaders, or managers needing to improve their maintenance programs. This course is a broad survey of essential aspects of maintaining a safe, efficient and reliable facility asset.

YOU WILL LEARN
• World class maintenance standards and how to apply them
• Key Performance Indicators for your dashboard
• Essential elements of work planning & scheduling
• Optimization of Preventive and Predictive maintenance
• How to focus your resources on critical equipment
• How to work with contractors more effectively
• Develop organizational competence

ABOUT THE COURSE
This course provides essential knowledge required for achieving excellence in maintenance management. Work control, planning, and scheduling will be covered. Participants will receive a sound, integrated, basic knowledge of the maintenance function and how to progress towards world-class performance. Individual action plans will carry course learning into the work environment.

COURSE CONTENT
• World class standards
• Maintenance strategies
• Planning and scheduling
• Optimizing Preventive and Predictive maintenance
• Identifying critical equipment
• Utilizing your CMMS
• Supplier certification
• Developing organizational competence
• Presenting your action plan

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
Seven Keys to World Class Asset Management (OM-24)

COURSE LEVEL Intermediate

DURATION 2 Days

DESIGNED FOR
Maintenance supervisors or above (including team leaders and managers) who are involved in an operational excellence or similar initiative. This short course will focus on the seven key strategies that apply to all proactive maintenance missions.

YOU WILL LEARN
• How to get control of the assets rather than letting them control you
• Essential tools for clarifying your information exchanges
• How to focus on lead time to facilitate work management
• How availability of spare parts creates reactive work
• The importance of building alliances in your teams

ABOUT THE COURSE
This short course will provide knowledge of how to progress towards world-class performance and support excellence initiatives. (May be taken in conjunction with OM-25 the same week)

COURSE CONTENT
• Seven keys for world class asset management

2011 Schedule and Tuition

HOUSTON
6-7-JUN US $1,280

ORLANDO
14-15-NOV US $1,280

Optimizing Preventive and Predictive Maintenance (OM-25)

COURSE LEVEL Intermediate

DURATION 3 Days

DESIGNED FOR
Maintenance planners and supervisors including team leaders and managers who want to improve their scheduled maintenance activities. This 3-day course will show you how to optimize activities while equipment is running.

YOU WILL LEARN
• How to evaluate the current effectiveness of PM and PdM
• How to migrate scheduled maintenance activities \ from shutdown to operating
• Use of the P-F curve to prevent equipment failures
• Base loading your schedule with PM activities
• Prioritizing work using a RIME (Ranking Index of Maintenance Expenditures) tool

ABOUT THE COURSE
This 3-day course will help you evaluate and improve your PM and PdM activities necessary for gaining higher availability and reliability of equipment. (May be taken in conjunction with OM-24 the same week)

COURSE CONTENT
• Evaluating your PM system
• Linking PM to the work schedule
• Using PM and PdM to prevent equipment failures
• Simple prioritizing of work using a RIME tool
• Integrating Condition-Based activities with other maintenance strategies
• Basic equipment failure patterns and when to use PM

2011 Schedule and Tuition

HOUSTON
8-10-JUN US $1,920

ORLANDO
16-18-NOV US $1,920

Maintenance Planning and Work Control (OM-41)

COURSE LEVEL Foundation

DURATION 5 Days

DESIGNED FOR
Maintenance managers, superintendents, supervisors, team leaders and planners engaged in work management, planning, and scheduling.

YOU WILL LEARN
• Develop world class planning and work control
• Employ business process analysis techniques in work control
• How to use a gap analysis on your work management system
• Step-by-step work control from identification through using work history
• Optimization of preventive and condition-monitoring activities
• Techniques critical equipment analysis, critical spares control and emergency response work

ABOUT THE COURSE
This course is designed to build competency in Work Control as a primary skill set in the Competency Map for Facilities Maintenance Management. It will focus on the six phases of work management: work identification, planning, prioritization, scheduling, execution and history capture. These essential skills are the key components of integrity management, safety, resource control, and reliable operation. A pre and post self assessment will be used to measure competency improvement. Each participant will develop an action plan to help their organizations become more efficient and safe.

COURSE CONTENT
• Work identification
• Planning
• Prioritization
• Scheduling
• Execution
• History records
• Optimizing preventive maintenance
• Predictive maintenance planning
• Critical equipment focus
• Emergency response

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.

Effective Maintenance Shutdowns (OM-43)

COURSE LEVEL Foundation

DURATION 5 Days

DESIGNED FOR
Maintenance, engineering, and operations personnel planning and managing effective maintenance shutdowns and includes key skills in maintenance planning and scheduling.

YOU WILL LEARN
• How to develop and control maintenance shutdown scope of work
• Control work before and during the maintenance shutdown
• Use available computerized scheduling tools
• Use Manpower planning and control methods
• How to measure progress of the maintenance shutdown
• Manage worker productivity
• How to measure maintenance shutdown performance
• How to improve performance on future maintenance shutdowns

ABOUT THE COURSE
This course is designed to teach the skills of maintenance shutdown management as described in the Facilities Maintenance Management Competency Map. You will develop shutdown planning strategies and will develop the organizational structure necessary for managing successful shutdowns. Case studies and real world examples will be used to reinforce the techniques learned in the course. Students will be asked to bring examples from their maintenance shutdown experiences to be used as case studies during the course.

COURSE CONTENT
• Maintenance shutdown terms and basics
• Shutdown planning strategy: establishing goals and objectives, working cooperatively across departments, developing maintenance shutdown procedures
• Management planning: components of the maintenance shutdown plan, planning for effective communications
• Developing a management strategy, organization, and roles and responsibilities
• Work scope development and strategy
• Planning and scheduling controls: participation and teamwork, the overall plan, specifying tasks, shutdown and start-up plans, work scheduling, optimizing the plan, handling emergent work, work control documents
• Computerized scheduling tools
• Manpower planning and control: using In-House resources, balancing teams and skills, managing scarce and critical resources

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.
COURSE CONTENT
• Overview of the tendering process
• Types of tenders and contracts
• The legal environment and the role of legal counsel
• Tendering procedures and key documents
• Buyer and seller pricing objectives
• Tools used in tendering

YOU WILL LEARN
• How to tender
• Types of contracts
• How to organize tendering process
• How to assess technical and commercial bids
• How to evaluate tender responses
• How to negotiate contracts

SUPPLY CHAIN
COURSE CONTENT
• Describing supply chain
• Determining the level of inventory
• Understanding the role of inventory
• Measuring and managing inventory levels
• Calculating carrying costs

YOU WILL LEARN
• How to decide on the right amount of inventory
• How to improve inventory record accuracy
• How to improve warehousing efficiency
• How to prepare inventory forecasts

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.

Refining Technology Overview (RF-31)

COURSE LEVEL Basic

DURATION 4 days

DESIGNED FOR Personnel in the petroleum refining business and related activities.

YOU WILL LEARN
- Sources of refinery feedstocks, crude or synthetic
- Composition of the feeds, their characterization, desirable properties, and selection
- How a refinery matches crude composition (assay) to product market demand by selection of process units
- Fundamentals of individual refinery processes, engineering, materials, and construction challenges
- Operational challenges
- How to improve profitability by debottlenecking, yield improvement, and blending
- How to evaluate alternative processing schemes and what makes a regional ‘Pacesetter’ refinery

ABOUT THE COURSE
This basic course shows how any crude oil is converted to products based upon the demand for premium quality gasoline, diesel, lube oil, and chemical feedstock. It is useful for those new to the refining business such as new hires of any discipline, transferees from other sectors of the petroleum, upstream, mid-stream, and chemical sectors. This course is excellent for experienced operators who want to understand the ‘why’ as much as the ‘how’ of refining. Basics of refining and its technology are stressed. Details of chemistry, process conditions, and materials are described where necessary to support the basics. The backbone of the course is to develop a refinery processing scheme through a series of simple, linked student-worked problems. This will show how a processing scheme to meet product qualities and volumes is developed.

COURSE CONTENT
- Refining climate, background and driving forces
- Crude oil distillation processes: atmospheric and vacuum
- Straight-run naphtha processing, treating, isomerisation and reforming for gasoline production
- Distillate desulfurization for diesel and heating oil production
- Light ends recovery and treating of liquefied petroleum gas (LPG) for gasoline blending and sales
- Vacuum gas oil conversion, catalytic feed hydroreformer (CFHT), fluidized catalytic cracking (FCC) and hydrocracking
- Light olefin streams recovery, treating and alkylation for gasoline
- Residue processing, residue fluidized catalytic cracking (RFCC), ARDS, VRDS, residue hydrocracking, delayed and continuous coking
- Lube oil production
- Aromatics recovery and re-arrangement to make benzene, toluene, ethyl-benzene and xylene (BTEX)
- Product blending to make gasoline, diesel, heating oil, and fuel oil
- Refining economics

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.

Refinery Gas Treating, Sour Water, Sulfur and Tail Gas (RF-61)

COURSE LEVEL Intermediate

DURATION 5 days

DESIGNED FOR Personnel in the gas treating, sulfur recovery and environmental conservation areas of the petroleum refining business including managers, process engineers, and operators.

YOU WILL LEARN
- Safety concerns with handling H2S and H2S rich streams
- Composition of typical refinery sour gas and acid gas feeds and their characterization
- The different types of amines: advantages and disadvantages
- How to select an amine from the various types available and calculate amine circulation rates required
- How to select a sour water processing scheme
- How to select sulfur recovery unit configuration
- About the economics of tail gas treatment plant selection to meet legislation
- Individual processes, engineering, materials, and construction challenges
- How to handle the operation of units, interaction and challenges encountered
- How to maximize reliability
- How to increase sulfur removal and recovery by debottlenecking, changing solvents, and sulfur plant oxygen injection

ABOUT THE COURSE
This is an intermediate, five-day course with an established, successful format that has been delivered worldwide to refine and natural gas process engineers and managers. Practical acid gas removal, sour water stripping, and sulfur recovery processes are stressed. Details of chemistry, process conditions, and materials are described as required to assure a real understanding of the processes and their materials, construction, and operational issues. To ensure that participants return to their workplace with enhanced ability and understanding, a large portion of the course includes participant discussions and problem solving.

COURSE CONTENT
- Source and compositions of refinery sour gas and sour water streams
- Types of sulfur compounds and ammonia and their effects on treating, stripping, and sulfur recovery
- Gas treating with amines – Acid Gas Removal Unit (ARU)
- Sour water stripping (SWS)
- Elemental sulfur recovery – Sulfur Recovery Unit (SRU)
- Tail gas treating – Tail Gas Unit/Tail Gas Clean-Up (TGU /TGCU)
- Incineration

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.

Optimizing Asset Availability Using Reliability Engineering (REL-4)

COURSE LEVEL Intermediate

DURATION 5 days

DESIGNED FOR Maintenance, engineering, and operations personnel involved in improving reliability, availability, condition monitoring, and maintainability of process equipment and systems. Participants should have foundation skills in statistical analysis and reliability techniques for equipment.

YOU WILL LEARN
- IE Fundamentals – Important Definitions
- – Three Types of Availability
- – How Equipment Spends Its Time
- – Statistical Analysis for Reliability Engineering
- – Why Gaussian Statistical Analysis May Not Apply
- – Weibull Analysis
- – Reliability-Centered Maintenance (RCM) Methodology
- – Seven Questions of RCM
- – Six Failure Patterns and the Maintenance Strategies for Battling Them
- – Failure Modes, Effects, and Criticality Analysis
- – How to Apply RCM in Operating Facilities
- – How to Apply RCM in New Facilities
- – How to Implement a Reliability-Centered Maintenance Program
- – RCM with Simulation and Modeling
- – Root Cause Analysis (RCA) Methodology
- – How to Implement a Successful RCA Program
- – Availability Simulation and Modeling
- – Building Reliability Block Diagrams (RBDs)
- – Assessing System Design
- – Assessing Maintenance Strategies
- – Assessing Spares Holding Strategies
- – Failure Reporting, Analysis, and Corrective Action Systems (FRACAS)
- – Relationship to RCM, RCA, Statistical Analysis, and Availability Simulation and Modeling
- – Fundamental System Requirements
- – How to Implement FRACAS

ABOUT THE COURSE
This course is designed to teach the skills of Availability Engineering as detailed in the Facilities Maintenance Management and Reliability Engineering Competency Maps. We will use statistical analysis examples and Monte Carlo Simulation software to measure plant availability and optimize it against business need. Case studies and exercises will be used to demonstrate availability optimization techniques and their benefits.

COURSE CONTENT
- Statistical analysis techniques
- MTBF
- MTTR
- Weibull Analysis
- Monte Carlo simulation
- Availability analysis and simulation
- Equipment performance gap analysis
- Work procedure analysis for maintainability
- Creating improvement actions in the organization

For schedule and pricing information or to arrange an In-House session of this course, visit our website at www.jmcampbell.com or contact us at jmcsupport@jmcampbell.com.

2011 Schedule and Tuition

ORLANDO
5-9-DEC US $3,170
What is the PetroSkills MTech?
An online, part-time and flexible Masters Degree in Petroleum Technology awarded by Curtin University of Technology, Western Australia. Online assessment of selected PetroSkills courses will provide approximately half the total credits required for the MTech. The remaining program credits are obtained through workplace-based projects monitored and assessed by Curtin University.

Program Duration: 2-4 Yrs Part-Time – All Assessment Online
For course entry requirements, application information and course structure information, visit the MTech website at: www.mtechpt.curtin.edu.au
Operator Training

When it comes to training programs for plant and facility operators, one size doesn’t fit all. That’s why our Operator Training is designed from the beginning with your company in mind. Starting with a client consultation and a more formal needs analysis, we customize the course material and relate it directly to your facility, incorporating PFD’s, material balance tables and other information you may supply.

JMC Operator Training is presented on an In-House basis, featuring traditional courses delivered in the classroom, instructor-mentored online and blended courses. Course length is content-dependent but is flexible and adaptable to shift schedules. Courses are typically 2 to 10 days in length.

JMC Operator Training provides a productive experience for both the novice and the more seasoned operator or supervisor. Advanced level courses are available that include problem sets with applicable calculations, indispensable tools for the process troubleshooter’s master toolkit. Non-mathematical introductory courses are available for newer operators.

The JMC Master Operator Series™

JMC Master Operator Series™ courses are part of Operator Training and are a progression of courses specifically designed to deliver the knowledge competencies that are commensurate with a level of mastery in the operator’s craft. Our approach is to introduce and apply sound engineering principles and concepts in order to develop a true, in-depth understanding of process operations. One obvious advantage in our approach is to promote better technical communication between operators and engineers while eliminating serious sources of miscommunication among operators themselves.

JMC Master Operator Series™ courses are supported and validated by a network of 60+ working professionals and world-class instructors, many of whom are recognized experts in their field. Backed by the integrity and reputation of the JMC brand, who for 40+ years has been the international leader in the development of oil & gas professionals, offering the highest level facility Operator Training courses available anywhere.

For more information about Operator Training or the JMC Master Operator Series™, email operatortraining@jmcampbell.com or call our corporate offices at (405) 321-1383.
<table>
<thead>
<tr>
<th>COURSE LEVEL</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CONTENT</td>
<td></td>
</tr>
<tr>
<td>Types of dehydration processes: absorption, adsorption and condensation</td>
<td></td>
</tr>
<tr>
<td>Water vapor content of gaseous hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Hydrates and hydrate inhibition</td>
<td></td>
</tr>
<tr>
<td>Dewpoint depression</td>
<td></td>
</tr>
<tr>
<td>Mass transfer operations: absorption and stripping, trays vs. packing</td>
<td></td>
</tr>
<tr>
<td>TEG equipment: gas scrubbers, glycol contactors, flash tank, filters, lean/rich heat exchanger, regenerator, stripping gas</td>
<td></td>
</tr>
<tr>
<td>Operating procedures and problems for TEG systems: startup and shutdown, normal operations, glycol losses, corrosion, troubleshooting</td>
<td></td>
</tr>
<tr>
<td>Care of the TEG solution</td>
<td></td>
</tr>
<tr>
<td>Mole sieve gas dehydration</td>
<td></td>
</tr>
<tr>
<td>Adsorbers and desiccants</td>
<td></td>
</tr>
<tr>
<td>Mass transfer zone</td>
<td></td>
</tr>
<tr>
<td>Regeneration system</td>
<td></td>
</tr>
<tr>
<td>Operation and adsorbent life</td>
<td></td>
</tr>
<tr>
<td>Mole Sieve operating problems and troubleshooting</td>
<td></td>
</tr>
</tbody>
</table>

Course Level: Basic

Duration: 2 Days

Designed For: Plant and facility operators, supervisors and technicians.

You Will Learn:
- To determine the water content of produced natural gas
- The problems and dangers of hydrate formation
- Effective methods of hydrate inhibition
- Principles and operational elements of TEG gas dehydration
- Principles and operational elements of Mole Sieve gas dehydration

About The Course:
This course will provide the basic knowledge required for understanding operating issues in natural gas dehydration units. This course is customizable to client needs.

Course Content:
- Types of dehydration processes: absorption, adsorption and condensation
- Water vapor content of gaseous hydrocarbons
- Hydrates and hydrate inhibition
- Dewpoint depression
- Mass transfer operations: absorption and stripping, trays vs. packing
- TEG equipment: gas scrubbers, glycol contactors, flash tank, filters, lean/rich heat exchanger, regenerator, stripping gas
- Operating procedures and problems for TEG systems: startup and shutdown, normal operations, glycol losses, corrosion, troubleshooting
- Care of the TEG solution
- Mole sieve gas dehydration
- Adsorbers and desiccants
- Mass transfer zone
- Regeneration system
- Operation and adsorbent life
- Mole Sieve operating problems and troubleshooting

Email: operatortraining@jmcampbell.com or contact us at 1-405-321-1383 for more information.
John M. Campbell (JMC) Consulting provides first choice, high-end consulting for the global energy industry. Our major emphasis is on oil and gas production and processing facilities, for both onshore and offshore operations. We routinely perform services in the LNG, LPG, NGL and sulfur industries. Our consultants are highly experienced industry professionals and include consultants who are also world recognized instructors for Campbell courses.

Our Specialty Areas

Conceptual Design/Feasibility Studies
JMC Consulting provides front-end technical support and leadership from the earliest conceptual analyses through detailed assessments of completed designs and equipment selections. Our range of expertise includes evaluation of field development options, oil and gas processing facilities, and world-scale sulfur plants. As an integral part of your team or as an objective third-party reviewer, JMC Consulting brings broad experience to design, operations, construction, and safety.

Specialist Consulting
The world-wide availability and capability of JMC Consulting provides specialists to meet your needs, whether in strategic planning, engineering, safety, or due diligence support. We have provided specialist consulting as third-party support to peer assist reviews, expert witness, owners’ engineer, third party process simulation review and optimization, facility startup support, hazards analysis and remediation, and sulfur process consulting.

Sulfur Process Expertise
JMC Consulting is an authoritative source for sulfur technology. We have experience in process development, sulfur technology training, troubleshooting, facility operations and start-up, economic evaluations, process studies, and business development. Specific project types include, Claus Sulfur Recovery Units, SULFTEN Tail Gas Treating Units, SCOT™ (MDEA) Tail Gas Treating Units, Stretford Units, Amine Treating Units, Gas Processing, Sour Water Strippers, Gas Plant/SRU Utilities and Off-sites.

Troubleshooting and Debottlenecking
We are frequently asked to address operating problems, bottlenecks, modifications or reliability in existing facilities. Our worldwide experience provides the insight to allow us to efficiently develop innovative and cost effective solutions.

Facility Optimization/Facilities Consulting Services
JMC Consulting can provide facilities with the uniquely technical resources that many asset owners lack to optimize asset operations to minimize operating costs. In addition, we can provide facility engineering services in a cost effective approach through a consulting services retainer program.

Operations Support/Start-Up Support/Performance Testing
From operator support through our facilities engineering capabilities to start-up support and facility performance planning and testing, JMC Consulting provides first-choice consulting to maintain, optimize, and/or validate your assets capabilities.

Process Safety/PSM/HAZOP Support and Participation
JMC Consulting prides itself in its safety culture. This attitude of “safety first” permeates all our work. Our consultants routinely conduct and participate in process hazard analyses and process safety reviews, e.g. HAZOPs, LOPA, and PSM audits. The safety expertise at JMC Consulting is a natural extension of our wide ranging engineering, operations, and maintenance experience.

Owners’ Engineer
JMC Consulting can provide expert technical overview for clients at any stage of a project. Our experts can advise if project deliverables are to industry standards and provide technical guidance to our clients to ensure their projects meet their standards and expectations.
A brief overview of projects recently completed by JMC Consulting.

Peer Assist Reviews
JMC Consulting provided independent third party consultation during a Peer Assist Review of a deepwater topsides design. The objective was to review the process flow diagrams and the design and operating philosophies for the current development case. JMC Consulting participated with the client’s Subject Matter Experts and project team to review the current design with the focus of mitigating any inherent risks in the process and to identify any possible opportunities to improve topside safety and operational reliability.

Process Selection Studies
JMC Consulting provided a high-level evaluation of Nitrogen Rejection Unit (NRU) designs currently being used in the industry (Single-Column, Dual-Column and any other design that may be pertinent to our evaluation) with a proprietary process. The HYSYS® simulations were studied over a range of inlet nitrogen concentrations from 10 to 70 mole percent.

For each process design, the heat and material balances, compression power, heat transfer surface area, methane and nitrogen recovery, operating costs and estimated capital costs for each option were developed. Each technology reviewed had advantages and disadvantages. The primary driver for process selection was the design inlet nitrogen concentration. The study provided the client with a clear justification for the optimum process selection for the project.

Process Safety Reviews/PHA Support
Consultants from JMC Consulting were retained to facilitate Hazard and Operability (HAZOP) studies for a pilot oil sands extraction plant outside Vernal, Utah, USA. In addition to the HAZOPs performed, JMC Consulting developed guidance manuals for managing the organization’s process safety management system and general safety program. An emergency response plan was developed and JMC Consultants developed first draft operating procedures for commissioning, startup and normal operation of the plant.

JMC Consultants provided process safety support for an upgraded propane shipping facility in Texas which included additional storage bullets, state of the art metering and monitoring equipment and upgrading the pipeline pump to ship increased volumes of propane into Mexico. JMC Consulting performed PSM/RMP audits, process hazards analysis (PHA) studies, calculated worst case and alternative release scenarios and prepared the facility’s Risk Management Plan submission.

Owners’ Engineer
JMC Consulting provided an independent, third party assessment of recommendations provided by an engineering contractor for modifications to a sour gas treating facility/sulfur recovery process to meet state emission limits. The independent review generated many alternate recommendations that reduced the capital cost of the modifications. In addition, the focus of the study was on eliminating the source for the operating problems upstream rather than installing additional equipment and controls to deal with the problems downstream.

The above examples are just a sampling of the many projects executed by JMC Consulting. To learn more, contact JMC Consulting by phone at 1-800-230-9128 or by email at consulting@jmcampbell.com.
TIP OF THE MONTH

The classroom is not the only way to learn from John M. Campbell & Co.’s expert instructors. Our instructors share their valuable, technical knowledge monthly to address current issues in the Oil and Gas industry through our Tip of the Month (TOTM).

The Campbell Tip of the Month is available FREE by subscribing at www.jmcampbell.com.

The Campbell Tip of the Month is available in both English and Spanish.

The Hybrid Hydrate Inhibition Part 2: Synergy Effect of Methanol and KHI

July 2010
By: Dr. Mahmood Moshfeghian

Thermodynamic Hydrate Inhibitors (THIs) are used in concentration ranging from 10 to 60 weight percent in water and Low Dosage Hydrate Inhibitors (LDHIs) are used in concentration normally less than 5 weight percent. A proper combination of THI and LDHI will result in a lower injection rate of their mixture while controlling hydrate formation and the ability to dissociate any formed hydrate.

Laboratory studies and field experiences indicate hydrate-inhibition synergy is gained through the combination of two THIs or a combination of a THI and a LDHI. This is termed a hybrid hydrate inhibition (HHI).

In the June 2010 tip of the month (TOTM) we demonstrated the synergy effect of mixed THIs like NaCl and MEG solution and presented a shortcut method to estimate the synergy effect of brine and MEG solution. In this TOTM, we will discuss the results of a successful application of combined methanol and a KHI solution for a well producing natural gas, condensate and water in the Gulf of Mexico (GOM). This TOTM is based on a successful field study reported by Szymczak et al.

The Hybrid Hydrate Inhibition

June 2010
By: Dr. Mahmood Moshfeghian

Laboratory studies and field experiences indicate hydrate-inhibition synergy is gained through the combination of two or more thermodynamic hydrate inhibitors (THIs) or a combination of a THI and a low dosage hydrate inhibitor (LDHI). This is termed a hybrid hydrate inhibition (HHI).

In this TOTM we will demonstrate the synergy effect of mixed THIs like NaCl and MEG solution. We also present a simple shortcut method for estimating hydrate formation temperature depression in the presence of mixed THIs. In the next TOTM, we will discuss the results of a successful application of combined methanol and a KHI solution for well producing natural gas, condensate, and water in the Gulf of Mexico (GOM).

Three Simple Things to Improve Process Safety Management

April 2010
By: Clyde Young

When there are newspaper accounts of process incidents that have occurred, there is usually a statement along the lines of, “It just happened with no warning.” There are warning signs for every incident. Latent failures exist in all processes and eventually lead to active failures when circumstances align. Personnel must be taught how to see and react to these warning signs.

In this Tip of the Month, we look at how to deal with some of the challenges of managing process safety. This TOTM is an excerpt of a paper presented by JMC Instructor/Consultant, Clyde Young at the 2008 Mary K. O’Connor Process Safety Symposium. This TOTM continues where the February 2009, TOTM left off.

To learn more about these tips and past Tips of the Month, visit JMC Tip of the Month at www.jmcampbell.com/TOTM.
Tip of the Month Archives Available for Free Download at www.jmcampbell.com

March 2010 The parameters affecting a phase envelope in the dense phase region
February 2010 Distribution of Sulfur-Containing Compounds in NGL Products
January 2010 Variation of properties in the dense phase region; Part 2 – Natural Gas
December 2009 Variation of properties in the dense phase region; Part 1 - Pure Compounds
November 2009 Three Simple Things to Improve Process Safety Management
October 2009 Considering the effect of crude oil viscosity on pumping requirements
September 2009 How to Tune the EOS in your Process Simulation Software?
August 2009 How sensitive are crude oil pumping requirements to viscosity?
July 2009 Variation of Natural Gas Heat Capacity with Temperature, Pressure, and Relative Density
June 2009 Corrosion Monitoring and Inspection – Is There a Difference?
May 2009 The Sensitivity of k-Values on Compressor Performance
April 2009 Quick Determination of the Methanol Injection Rate for Natural-Gas Hydrate Inhibition
March 2009 How Sensitive is Pressure Drop Due to Friction With Roughness Factor?
February 2009 Three Simple Things to Improve Process Safety Management
January 2009 Pressure Relief System Design Pit-falls
December 2008 Maintenance Fallacy: Focusing on Maintenance Planning and Scheduling and Reliability Will Increase Reliability Quickly
November 2008 Effect of gas molecular weight on centrifugal compressor performance
October 2008 How good are the detailed methods for sour gas density calculations? Part 2
September 2008 How good are the shortcut methods for sour gas density calculations? Part 1
August 2008 How good is Flanigan Correlation for Two Phase Gas-Liquid Pipeline Calculations?
July 2008 The Truth about Why Your Preventive Maintenance Program Isn’t Working
June 2008 Two Phase Gas-Liquid Pipeline Simulation
May 2008 Flash Tank vs. HEX Economizer Refrigeration System
April 2008 Providing a safe work place is good business: Learn from experience
March 2008 Effect of Impurities on Propane Refrigeration System – Constant Approach Temperature
February 2008 Effect of Impurities on Propane Refrigeration System
January 2008 Refrigeration with Flash Economizer vs Simple Refrigeration System
December 2007 Acid Gas-Water Phase Behavior
November 2007 Water-Sour Natural Gas Phase Behavior: Part 2
October 2007 Water-Sweet Natural Gas Phase Behavior: Part 1
September 2007 Consequence of Liquid Carry Over – Part 2: Fixed Heat Exchanger Area
August 2007 Vigilance in Outside Contracting
July 2007 Consequence of Liquid Carry Over in a Simple Dew Point Control Plant
June 2007 Why do I care about phase diagrams?
May 2007 Vigilance With a Healthy Dose of Fear
April 2007 MEG Dehydration Ability in MEG Injection Plant
March 2007 MEG Injection vs. TEG Dehydration
February 2007 Friction Pressure Drop Calculation
December 2006 Guidelines for Liquid Density Prediction – Part 1: Correlations
November 2006 Liquid Density
October 2006 Guidelines for Selecting K-Value Method
September 2006 How to determine K-Values?
August 2006 Effect of Viscosity on Pump Performance
July 2006 Accuracy of Three Shortcut Prediction Methods for Hydrate Inhibition
June 2006 Accuracy of Commercial Process Simulators for Hydrate Inhibition
May 2006 Better Alternative for Natural Gas Sweetening
Gas Conditioning and Processing

Volume 1: Gas Conditioning and Processing
The Basic Principles (a Campbell book)
One of a four volume series, this book has been published for the natural gas processing industry for over 25 years. This edition has been edited to reflect continuing changes in technology and the manner in which it is practiced. This book addresses gas processing overview; introduction; material and energy balances; phase behavior; physical properties; water-hydrocarbon equilibrium; hydrates; applied thermodynamics; process control and flow of fluids.

Volume 2: Gas Conditioning and Processing
The Equipment Modules (a Campbell book)
This edition includes information applying today’s technology and the current business requirements in selecting and operating gas processing and production facilities. This book aids in decisions relating to separation; heat transfer; pumps; compressors; refrigeration; fractionation and absorption; glycol and solid bed dehydration.

Volume 3: Gas Conditioning and Processing
Computer Applications for Production/Processing Facilities (a Campbell book)
This book emphasizes the more detailed calculations required for computer modeling and simulation. Equations of state, heavy component characterization, rotating equipment modeling, fractionation, fluid flow and separation are covered. These topics are addressed by the practical application of modeling techniques available in most simulators. The questions “How do I know if the model is correct?” and “What changes will I make based on my model?” are emphasized in each chapter.

Volume 4: Gas Conditioning and Processing
Gas Treating and Sulphur Recovery (a Campbell book)
This book concentrates on problems associated with treating and removing H₂S, CO₂ and trace sulfur compounds often associated with natural gas production. A detailed view of commercial amine type processes; carbonate processes; physical absorption methods; solid bed sweetening; sulphur production; and tail gas conditioning is presented.

Applied Water Technology (a Campbell book)
This book focuses on water handling and disposal problems for produced water associated with gas and oil production. The subjects covered include: water sampling and analysis; water-formed scales; corrosion control; microbiology; water processing equipment; water injection system; water treatment for EOR; boiler water and cooling water treatment.

Pricing for Campbell books.
- $135 each US and Canada
- $160 each Europe and South America
- $170 each All other countries

To place an order, visit our online store at store.jmcampbell.com.
All classes available at your location. Contact us today.

GCAP® SOFTWARE

Complicated equations, precise calculations and complex correlations are all vital daily tasks for an engineer; but they are time consuming and time is a valuable resource. We can help conserve this resource with GCAP®.

Developed 18 years ago, in part by Dr. Mahmood Moshfeghian, GCAP® is companion software based on the equations and correlations found in Volumes 1 and 2 of the Gas Conditioning and Processing series.

To learn more about GCAP® visit: store.jmcampbell.com

Production Operations
Thomas O. Allen and Alan P. Roberts

- **Set**: Price $180.00
- **Vol 1 & 2**: Price $95.00
 - Fourth Edition - Seventh Printing - September 2010

Basic Petroleum Geology
Peter K. Link

- Price $82.50

Applied Reservoir Engineering Vol. 1 & 2
Charles R. Smith, G.W. Tracy and R. Lance Farrar

- **Set**: Price $180.00
- **Vol 1 & 2**: Price $95.00
 - Seventh Printing - September 2010

Risk and Decision Analysis in Projects, 2nd Ed.
John Schuyler

- Price $34.95
- ISBN 1-880410-28-1

Production Optimization Using Nodal™ Analysis
H. Dale Beggs

- Price $95.00
- ISBN 978-0-930972-14-1

Gas Production Operations
H. Dale Beggs

- Price $92.50

Economics of Worldwide Petroleum Production
Richard D. Seba

- Price $105.00
- ISBN 978-0-930972-24-0

Decision Analysis for Petroleum Exploration, 2nd Ed.
Paul Newendorp and John Schuyler

- Price $64.95
- Published by Planning Press, Aurora, CO

Corrosion and Water Technology for Petroleum Producers
Loyd W. Jones

- Price $75.00
- Published 1998
- Second Printing 1992
- ISBN 0-930972-09-0

To place an order, visit www.petroskills.com/publications
Exploration and Production

PetroSkills Exploration and Production is a unique competency-based training program. The training courses listed on the opposite page are currently offered by PetroSkills E&P publicly and on an in-house basis for 2010. PetroSkills also offers a variety of programs with specific focus to certain areas or individuals in the Oil and Gas Industry.

PetroSkills®

- **Accelerated Development Programs** – combine course work, coaching, work experiences, and testing to product independently contributing engineers, geoscientists, and petrophysicist from a population of recently hired technical professionals.

- **Virtual Learning** – is now available to supplement and compliment our traditional face to face classroom activities and makes it possible for our instructors to present to students, through a single, consistent, and intuitive web interface.

- **Operations & Maintenance** – combines the proven capability and learning content of Southern Alberta Institute of Technology with the PetroSkills competency profiling and training delivery expertise to give today’s O&M workforce now has access to a robust set of learning resources, that provide access at their desktops 24/7.

- **PetroSkills Competency Solutions** – provide the Competency Analysis Tool – software which lets individuals to direct their own career development through the identification of skill gaps and the learning activities needed to close those skill gaps. It also provides organizations with an effective system to organize, measure, and manage development requirements. Also available is TRACCESS CI is designed to address the unique requirements of delivering, managing, tracking and assuring the knowledge and capability of operator and maintenance (O&M) technicians. The system provides a self directed method of monitoring compliance and building competence of all process operations personnel.

For a full description of these courses, and those listed on the following pages, as well as schedules and pricing, contact us at training@petroskills.com or visit our website at www.petroskills.com. For a free PetroSkills E&P catalog, email us at the above address or call +1-918-828-2500.
Introductory and Multi-Discipline Training

- Basic Drilling, Completion and Workover Operations – BDC
- Basic Petroleum Engineering Practices – BE
- Basic Petroleum Technology – BPT
- Evaluating and Developing Shale Resources – SRE
- Overview of the Petroleum Industry – OVP
- Operating Company / Service Company Dynamics: How E&P Gets Done – OSD
- Surface Production Operations – PO3

Geophysics

- Advanced Seismic Stratigraphy: A Sequence – Wavelet Analysis Exploration – Exploitation Workshop – ADS
- Applied Seismic Anisotropy for Fractured Reservoir Characterization – SAF
- AVO, Inversion, and Attributes: Principles and Applications – AVO
- Basic Geophysics – BGP
- Introduction to Seismic Stratigraphy: A Basin Scale Regional Exploration Workshop – ISS
- Seismic Acquisition Field Techniques – Theory and Practice – SFT
- Seismic Attributes for Reservoir Characterization – SARC
- Seismic Interpretation – SI1
- Seismic Velocities and Depth Conversion – SVD

Geology

- Analysis of Structural Traps in Extensional Settings – ESS
- Basic Petroleum Geology – BG
- Basin Analysis Workshop: An Integrated Approach – BA
- Carbonate Reservoirs – PCR
- Compressional and Transpressional Structural Styles – CPST
- Deep-water Turbidite Depositional Systems and Reservoirs – DWT
- Development Geology – DG
- Geotechnical Techniques for Solving Reservoir Management and Field Development Problems – GTS
- Mapping Subsurface Structures – MSS
- Naturally Fractured Reservoirs: Geologic and Engineering Analysis – FR
- Operations Geology – OG
- Petroleum Geochemistry: Tools for Effective Exploration and Development – MGT
- Production Geology for Other Disciplines – PGD
- Prospect and Play Assessment – PPA
- Sandstone Reservoirs – SSR
- Sequence Stratigraphy: An Applied Workshop – SOS
- Structural Styles in Petroleum Exploration – ST

Petrophysics

- Applied Rock Mechanics – ARM
- Capillarity in Rocks – CIR
- Carbonate Reservoirs: Petrophysical Characterization – CBP
- Cased Hole Formation Evaluation – CH
- Core and Core Analysis – CCA
- Foundations of Petrophysics – FPP
- Integration of Rocks, Log and Test Data – ILC
- Operations Geology – OG
- Petrophysics of Unconventional Reservoirs – PUR
- Shaly Sand Petrophysics – APS
- Structural and Stratigraphic Interpretation of Dipliers and Borehole-Imaging Logs – SSI
- Well Log Interpretation – WLI
- Wireline Formation Testing and Interpretation – WFT

Well Construction / Drilling

- Basic Drilling Technology – BDT
- Cementing Practices – Cementing II – CEP
- Directional, Horizontal, and Multilateral Drilling – DHD
- Drill String Design and Optimization – DSD
- Drilling Fluids Technology – DFT
- Drilling Practices – DP
- Fundamentals of Casing Design – FCD
- Managing Wellsite Operations – MWC
- Practical Drilling Skills – PDS
- Primary Cementing – Cementing I – PCE
- Solids Control Systems – SCS
- Stick Pipe Prevention – Train Wreck Avoidance™ – SPP
- Well Design and Engineering – WDE

Reservoir Engineering

- Applied Reservoir Engineering – RE
- Basic Reservoir Engineering – BR
- Basic Reservoir Simulation – BRS
- Capillarity in Rocks – CIR
- Coalbed Methane – CBM
- Gas Reservoir Management – GRM
- Horizontal and Multilateral Wells: Analysis and Design – HML1
- Integrated Reservoir Modeling – GRD
- Naturally Fractured Reservoirs: Geologic and Engineering Analysis – FR
- New Opportunities in Old Fields – NOF
- Oil and Gas Reserves Evaluation – OGR
- Oil Recovery Enhancement Techniques – ORE
- Reservoir Characterization: A Multi-Disciplinary Team Approach – RC
- Reservoir Engineering for Other Disciplines – REO
- Reservoir Fluid Properties – RFP
- Reservoir Management – RM
- Reservoir Simulation Strategies – RSS
- Streamlines: Applications to Reservoir Simulation, Characterization and Management – SRS
- Waterflooding A to Z – WF
- Well Test Design and Analysis – WTA

Production and Completion Engineering

- Acidizing Applications in Sandstones and Carbonates – ASC
- Advanced Hydraulic Fracturing – AHF
- Artificial Lift Systems – ALS
- Basic Slab Play Completion and Stimulation Technology – BSPC
- Beam Pumps – BP
- Casing and Cementing – CAC
- Completions and Workovers – CAW
- Downhole Remediation Practices for Mature Oil and Gas Wells – DRP
- Electrical Submersible Pumps – ESP
- Flow Assurance for Offshore Production – FAOP
- Formation Damage: Causes, Prevention, and Remediation – FD
- Gas Lift – GLI
- Gas Production Engineering – GPO
- Gas Well Decontamination – GWD
- Horizontal and Multilateral Wells: Completions and Stimulation – HML2
- Hydraulic Fracturing Applications – HFU
- Performance Analysis, Prediction and Optimization Using NODAL™ Analysis – PO2
- Plunger Lift – PLI
- Production Chemistry – OGP
- Production Logging – RPM
- Production Operations I – PO1
- Production Technology for Other Disciplines – PTO
- Progressing Cavity Pumps – PCP
- Sand Control – SNDC
- Surface Production Operations – PO3
- Well Stimulation: Practical and Applied – WS

Petroleum Business

- Advanced Decision Analysis with Portfolio and Project Modeling – ADA
- Basic Petroleum Economics – BEC
- Cost Management – CM
- Economics of Worldwide Petroleum Production – EWP
- Expanded Basic Petroleum Economics – BEC
- Fundamentals of International Oil and Gas Law – IOG
- International Petroleum Contracts – IPC
- Introduction to Petroleum Business – IPB
- Petroleum Finance and Accounting Principles – PFA
- Petroleum Project Management: Principles and Practices – PPM
- Petroleum Risks and Decision Analysis – PRD
- Strategic Thinking: A Tool-Based Approach – STT

Health, Safety and Environment

- Accredited Environmental Practitioner: IEMA Associate Certificate by Applied Learning – HS71
- Accredited Health & Safety Practitioner: Occupational Health & Safety NVQ Level 4 (to CMiOSH) by Applied Learning – HS70
- Applied Environment – HS23
- Applied Health – HS24
- Applied HSE Management – HS28
- Applied Safety – HS20
- Basics of Environment – HS13
- Basics of Health – HS14
- Basics of HSE Management – HS18
- Basics of Safety – HS10
- Construction and Demolition Safety – HS48
- Contractor Safety Management – HS46
- NEBOSH International General Certificate – HS55
- Risk Based Auditing – HS47
- Risk Based Process Safety Management – HS45

Petroleum Data Management

- Introduction to Data Management – GEOM1

For a full description of these courses, schedules and pricing, visit www.petroskills.com

For a free PetroSkills catalog, call +1.918.828.2500 or email training@petroskills.com.
HSE PROFESSIONAL DEVELOPMENT ‘LADDERS’

Programs that support HSE professional development, here shown for Institution of Occupational Safety and Health (IOSH) – the world’s largest professional membership body for health and safety practitioners. A similar ladder is available for environmental professional development through IEMA - the Institute of Environmental Management & Assessment.

www.iosh.co.uk / www.iema.net

PROFESSIONAL DEVELOPMENT BY APPLIED LEARNING

ACCREDITED HEALTH & SAFETY PRACTITIONER: NVQ LEVEL 4 (to CMIOSH) - HS70
ACCREDITED ENVIRONMENTAL PRACTITIONER: AIEMA ASSOCIATE CERTIFICATE (to AIEMA) - HS71

• For practicing HS&E professionals
• Mentored and perfectly blended to balance one-to-one learning with work-based evidence
• Supports professional development to CMIOSH and AIEMA (with reciprocity agreements with other national bodies)
• Duration is typically twelve months for health and safety program and nine months for environment program
• Flexible - you can start the program at any time

PETROS BAROLA | A fictitious but highly-authentic case study is used to challenge participants to apply their knowledge across a range of scenarios in our Applied and specialist courses. Practical exercises, problem solving, and meetings with PetroSkills employees at all levels makes one feel that you have actually worked on the island of Barola.
HEALTH, SAFETY, ENVIRONMENT

PetroSkills designed the publicly offered Health, Safety, Environmental and HSE Management courses in this section to develop your skills and competency in this discipline. The Course Progression Matrix below shows how these courses relate to each other and provides an easy way to construct a training plan with coursework that specifically relates to present or future job requirements. Likewise, managers can use the matrices to develop training plans for their team.

The HSE courses are suitable for all professionals including Engineers, Supervisors, Project Managers, Operations and HSE professionals. HSE professionals will also benefit from courses that provide an understanding of other petroleum-related functions and disciplines. For cross-training, PetroSkills recommends courses in the lighter-shaded columns on either side of the HSE – Health, Safety, Environment section.

The following instructors have been selected and approved by the PetroSkills Curriculum Network to teach one or more of the following Health, Safety, Environment courses:

Andrew Arkinstall
Stephen Asbury
Richard Ball
Art Bedrosian
Stewart Clarke

Andrew Cope
Chris Dougherty
Kerry Edwards
Melita Elmore
Craig Lydiate

Andrew Steel
Tom Van Zandt
Clyde W. Young

The following courses are available at your location. Contact us today.

All classes available at your location. Contact us today.
Any Course. Any Time. Any Place.
Courses and services wherever you want, whenever you want, however you want.

John M. Campbell & Co. is committed to making training as convenient as possible, that’s why we offer our courses in areas known to be hubs of oil and gas activity, minimizing your travel and other related costs and adding value to our courses.

Don’t see the course you need on our schedule? Any course listed in our catalog or on our website can be scheduled on an In-House or Sponsored Public basis at the location of your choice.

So whether you are looking for training for yourself or your entire team, John M. Campbell & Co. offers an option to fit your needs.

To learn more, email jmcsupport@jmcampbell.com or call 1-405-321-1383.

John M. Campbell & Co. is an exclusive provider of PetroSkills' facilities training.
KY ALSTON
MR. KY ALSTON comes from an extensive background in gas processing. He is currently a contract Instructor/Consultant for John M. Campbell & Co. Ky had 24+ years with Amoco Production Company. He worked in maintenance, operations, and engineering disciplines for Amoco Production Co. in several locations throughout Wyoming. He worked his way up through the operations ranks training newer operators, debugging new projects. He then shifted his focus to the engineering group where he became heavily involved in the process simulation effort for process optimization and troubleshooting at several area facilities. He has also been involved in all stages of project management of all sizes. His primary responsibilities for JMC are Operator Training, Consulting and Process Simulation.

TIM ARMSTRONG
MR. TIM ARMSTRONG has over 40 years experience in Refining and Gas Treating/ Sulfur Recovery. He is currently an Instructor/Consultant for John M. Campbell & Co. Previously Mr. Armstrong has worked in plant operations and design engineering as well as licensing and technology development. Mr. Armstrong graduated in 1968 with a BSChE from Rose-Hulman Institute of Technology. He is currently a Registered Professional Engineer in Illinois, Texas, and Oklahoma and is a member of AIChe. Mr. Armstrong is an expert in the area of sulfur recovery, tail gas treating, and sour water stripping and presented papers at NPRA, North Texas Regional GPA, and AIChe meetings as well as published articles in Hydrocarbon Processing and Today’s Refinery.

FRANK ASHFORD
DR. FRANK ASHFORD has 40 years experience in oil and gas producing facilities. Dr. Ashford joined with John M. Campbell & Co. in 1988; he provides instruction fluently in either Spanish or English. Previous to joining John M. Campbell & Co., Dr. Ashford was a Professor at Central University of Venezuela, Caracas, Venezuela, where he taught various courses in Natural Gas Engineering Technology. He has authored technical articles published in World Oil, JPT, SPE, Intevep Pub., PDVSA, Pacific Oil World, AAPG, SPELAC, and GPA. He holds a B.S., a M.S. and a PhD in Petroleum Engineering from the University of Oklahoma.

LOU BEKE
MR. LOU BEKE is an Instructor/Consultant with John M. Campbell & Co.. He is working as a consultant in process design in general and as a consultant and advisor in the technology areas of gas treating and sulfur recovery and caustic-based product treating in particular. Lou retired from Mobil Technology Company after a 31-year career that included research, capital projects, technical service and troubleshooting, startup assistance for new and revamped units, and turnaround planning/support. He was lead technologist for gas treating, sulfur recovery and tail gas clean-up, sour water stripping and light product treating for Mobil’s worldwide downstream (refining) business when he retired. Lou has been a speaker at symposia, authored several papers and represented Mobil as a member of the Amine Best Practices Group. Lou earned a B.S. in Chemical Engineering at Drexel University.

JOHN BERRY
MR. JOHN BERRY has worked in the industry over 30 years as project engineer, engineering manager, and project manager. He has experience in the design and construction of natural gas and liquid pipelines, dehydration systems, compressor installations, and various surface facilities. Mr. Berry was named American Hero by Newsweek for work on behalf of peoples with disabilities and is the chair of RARC Board serving adults with disabilities. He is also a member of the Pipeliners Club of Tulsa. Mr. Berry received a B.S. in Industrial Engineering from the University of Oklahoma and well as an MBA.

GARY BLACKBURN
MR. GARY BLACKBURN has over 35 years of experience in engineering and management of oil and gas developments. During his 27 years working for Shell Oil Company, he led well construction and field production teams in the Gulf of Mexico, Texas, Oklahoma, Kansas and Alaska. While working in ABB's
Floating Production System’s Division, Gary led engineering teams designing deepwater systems, naval architecture, structural, topside facilities, drilling systems, and floating system hulls. After an assignment as the ABB’s Project Manager for ExxonMobil’s Kizomba A TLP, he was assigned as ABB’s Vice President - Project Execution. In this role, he was responsible for oversight of ongoing projects and development of new processes for EPC project execution. Currently, Gary is providing consulting services for drilling systems as part of field architecture design with operators of deepwater fields in the Gulf of Mexico.

JAMES N. BREAUX

MR. JIMMY N. BREAUX is a consultant engineer working for Shell International Exploration and Production as well as an Instructor/Consultant for John M. Campbell & Co.. He has more than 30 years experience in the oil and gas industry. He is currently working as Topsides Lead Engineer for a 120,000 BOPD FPSO in West Africa. He is responsible for Process, Mechanical, Instrumentation, and Rotating Equipment Engineering deliverables. Also Mr. Breaux is the Topsides Lead Engineer for design and installation of a 45 Mscfd Gas Lift Compressor and for a Floodwater Expansion project on a Gulf of Mexico TLP. This project is in the pre approval system selection phase. The expansion will involve addition of a 2nd gas turbine driven waterflood pump for 45,000 BWPD @ 5,000 psi discharge. His previous responsibilities include Topsides Manager for the Auger TLP in the Gulf of Mexico and leading the debottlenecking team for this facility. He was the API RP 2G Chairman 1991-1993 and headed a rewrite committee for offshore firefighting systems. He received a B. S. in Physics from Loyola University of New Orleans and a M. S. in Electrical Engineering from Tulane University. He is a Registered Professional Engineer in the State of Louisiana and a member of SPE.

MARK BOTHAMLEY

MR. MARK BOTHAMLEY is Chief Engineer with John M. Campbell & Co. His experience covers the areas of design, operation, troubleshooting and optimization of offshore and onshore oil and gas production and treating facilities. Prior to joining JMC he was with BP/Amoco for 24 years, in several locations around the world. Mr. Bothamley is a past chairman of the SPE Facilities Subcommittee and a former member of the GPSA Data Book Editorial Review Board. Mr. Bothamley holds a B.S. in Chemical Engineering from Lakehead University in Thunder Bay, Ontario, Canada, and a Diploma in Natural Gas and Petroleum Technology from the British Columbia Institute of Technology in Vancouver, B.C. Canada.

JOHN C. BOURDON

MR. JOHN C. BOURDON has more than twenty-nine years experience in hydrocarbon processing and specializes in sulfur recovery processes for the petroleum refining industry. Mr. Bourdon has been involved in the development of several sulfur-related technologies and mechanical innovations, has authored several papers and made presentations worldwide. He has experience with several E&C firms including extensive start-up and troubleshooting activities. He consults for both North American and International clients. He is a registered professional engineer and is fluent in English and Spanish. Mr. Bourdon has a B.S. in Chemical Engineering from the Georgia Institute of Technology and advanced degrees in other fields.

MICKE CRABTREE

Mr. MICK CRABTREE holds an MSc (Research) in Industrial Flow Measurement and an HNC in Electrical Engineering. Before joining John M. Campbell & Co. as an Instructor/Consultant, he trained over 5,000 engineers, technicians and scientists. Formerly trained in aircraft instrumentation and guided missiles in the Royal Air Force, he completed his service career seconded to the Ministry of Defense. Immigrating to South Africa in 1966, he worked for many years for a local manufacturing and systems integration company, involved in industrial process control, SCADA and PLC-based systems. Later, as editor and managing editor of ‘Pulse’, a leading monthly engineering journal, Mr. Crabtree wrote and published hundreds of articles as well as seven technical resource books on industrial process control: ‘Flow Measurement’, ‘Temperature Measurement’, ‘Analytical On-line Measurement’, ‘Pressure and Level Measurement’, ‘Valves’, ‘Industrial Communications’ and ‘The Complete Profibus Handbook’. Mr. Crabtree has spent the last 12 years running industrial workshops throughout the world in the fields of: Process Control and Instrumentation; Data Communications; Fieldbus; Emergency Shut-down Systems; Project Management; On-Line Analysis; Valve Technology; and Technical Writing and Communications.
PIERRE CREVIER

MR. PIERRE CREVIER earned B.Sc and M.Sc degrees in Chemical Engineering from the University of Waterloo in 1980 and 1987 respectively. He worked in operations, design and business development functions across Canada prior to joining Saudi Aramco in 1992. As a member of the Upstream Process Engineering Division in Dhahran he provides process consultancy to the company’s gas plants and refineries. Over the last 15 years he has led the company’s efforts in addressing chronic Claus catalyst deactivation caused by aromatic contaminants.

RALPH DARTEZ

MR. RALPH DARTEZ has over 30 years of engineering and management experience. He has led engineering, construction, operating and field development and management teams in the Gulf of Mexico, Alaska Cook Inlet and UK North Sea for Marathon Oil Company. Ralph was Marathon Oil Company’s Gulf of Mexico Region Manager during the mid 1990s at the time a number of deepwater fields were discovered and developed including Troika (2700’ water depth), Oyster (1000’ wd), Arnold (1700’ wd), Petronius (1800’ wd) and Camden Hills (7100’wd). He has experience with drilling and completions, design, construction and reservoir management of deepwater and particularly sub-sea developments.

ARTHUR DELARGY

MR. ARTHUR DELARGY has over 15 years experience in Process Design/Consultancy, Field Development Planning and Process Systems engineering. Technologies he has worked with include Nitrogen Rejection, CO/H\textsubscript{2} Coldbox technology, LNG, Gas Processing including dehydration/dewpointing, sweetening and NGL/LPG extraction, ammonia, heavy oil and various oil refining processes, as well as both on and offshore oil and gas experience. The scope of his project work has ranged from proposal preparation and field development planning to engineering design and HAZOP studies to troubleshooting on an operating plant. He holds a Masters degree in Chemical Engineering (Honors.)

KRIS DIGRE

MR. KRIS A. DIGRE is an Instructor/Consultant in the Offshore discipline for John M. Campbell & Co. He has over 36 years working in locations around the world. He has designed or been involved with the design of offshore structures located off the coast of West Africa, Alaska, Australia, Brazil, Borneo, California, China, Egypt, the Gulf of Mexico and the North Sea. He has been involved in the technical specification development and/or installation of all of deepwater Tension Leg Platforms (TLP) and a Floating Production System (FPS) in the Gulf of Mexico and an FPSO offshore Nigeria. Kris remains active in retirement providing advice to E&P project groups on various Nigeria FPSO projects. Mr. Digre is a graduate (BSCE) of Illinois Institute of Technology and a Licensed Professional Engineer in New Jersey, Louisiana, Texas and California.

BILL DOKIANOS

MR. BILL DOKIANOS has over 35 years experience in Electrical engineering. He is an Instructor/Consultant for John M. Campbell & Co. His experience includes Analyzing and solving poor platform up time at GB 128. Activities included process control changes due to stacked separator vessels, revising safe charts, operating settings and reconfiguration of pipeline export pumps. He managed a subsea tieback project in which the platform modifications included high pressure vessel redesign, dehydrator expansion, adding a second vapor recovery unit, restaging high pressure and intermediate gas compressors and modifying bulk oil process design. He has been responsible for DOT compliance activities and reporting. This included development and implantation of federal risk programs and smart pigging. Mr. Dokianos holds a Bachelor of Science in Electrical Engineering, Wayne State University, Detroit, MI. He is a Professional Engineer in the states of Louisiana and New Mexico, and holds a General and Commercial Contractor License in the State of New Mexico.

RAFIL ELYAS

MR. RAFIL ELYAS is an Instructor/Consultant of John M. Campbell & Co. He has approximately seventeen years experience in gas conditioning and processing. Mr. Elyas has authored several papers and made presentations worldwide. He has experience with several simulation software programs including HYSYS. He is a registered professional engineer with the Board of Engineers, Malaysia. Mr. Elyas is fluent in English and Bahasa: Malaysia and Indonesia. Mr. Elyas received a Bachelor’s Degree in Chemical Engineering from Syracuse University, LC Smith School of Engineering in Syracuse, New York.

ROBERT FANNING

MR. ROBERT FANNING is a training consultant with John M. Campbell & Co. He held various Process Engineering and Management positions in his 26 years with Mobil. Mr. Fanning’s background includes general oilfield facilities, water flood facilities, CO\textsubscript{2} flood facilities, NGL recovery, and LNG. Mr. Fanning was on the Board of the Permian Basin Chapter of the GPA for several years and is a past President of the chapter. He received his B.S. in Chemical Engineering from the University of Wyoming and is a Registered Professional Engineer in the state of Texas.

JOHN FARRAH

MR. JOHN FARRAH is an Instructor/Consultant for John M. Campbell & Co. He has more than 40 years of chemical production, power production, gas processing and process engineering experience. He works as a Gas Processing and Chemical Production Safety Consultant, who has proven strengths in the areas of planning, problem solving and team building, combined with attention to detail. He also has extensive knowledge in the field of safety. Mr. Farrah is a Fellow Member of the American Institute of Chemical Engineers, a Registered Professional Engineer in Texas, and served as Chairman for the Coastal Bend Section of AIChE. He has acted as Team Leader to update and publish the Gas Processor’s Association Gas “Plant Safety Checklist” and served as Safety representative for Marathon on the GPA Safety Committee for 10 years.
Mr. Farrah published and presented a paper on “Conversion of Boilers to Oil Firing” to the Mexican Chemical Engineering Society (IMIQ) in Mexico City. He received his B.S. in Chemical Engineering from the University of Colorado.

ALAN FOSTER

Mr. ALAN FOSTER is a training consultant with John M. Campbell & Co.; he is based in the UK. Mr. Foster spent 25 years with Petrolite Corporation and Baker Petrolite, involved in oilfield and refinery operational problems and their resolution by chemical treatment programs. Mr. Foster has developed and taught courses on oilfield water treatment and oilfield corrosion control, since 1978. Other courses included oil demulsification, paraffin and asphaltenes, oilfield microbiology (and MIC) and refinery technology. He was also qualified by the original training company in its field, to teach their project management course. He is a Chartered Chemist, Member of the Royal Society of Chemistry and a Fellow of the Chartered Institute of Personnel and Development. Mr. Foster received his B.S. in Applied Chemistry from Leeds Polytechnic (UK) and his MBA from Leeds University.

DAVID HAIRSTON

Mr. DAVID HAIRSTON is an Instructor/Consultant with John M. Campbell & Co. for over 7 years. Mr. Hairston has over 38 years of experience oil and gas pipeline systems in project and construction management, engineering and design, construction and material logistics, and executive management for oil and gas facilities. Project experience includes pipeline transportation and production facilities, both onshore and offshore, offshore structures, training, and construction operations. Worldwide project and construction management experience at all levels includes grass-roots gathering, processing, and transmission pipeline systems with a capital cost of over USD$ 2.5 billion. Specialized technical expertise includes river and special obstacle crossings using open-cut, bridging and directional drilling methods; offshore construction and logistics planning and operations. Mr. Hairston has been published in ASCE Magazine, Proceedings of Marine Technology, Proceedings of several industry Pipeline Conferences, and the Oil and Gas Journal. He holds a B.S. in Aerospace Engineering from Texas A&M University and an M.S. in Civil Engineering for the University of Houston. He is a Registered Professional Engineer in several U.S. states.

BRUCE HARTMAN

Mr. BRUCE HARTMAN has formal training in incident investigations, PSM auditing, audit team leader training, HAZOP facilitation, and engineering design for process safety and has been involved in more than 40 incident investigations either as consultant or as team leader including any litigation that has resulted. He has also facilitated or participated in 15 Process Safety Management audits of refineries and chemical plants and upstream facilities. Mr. Hartman has managed a team of experienced fire protection and process safety engineers split between Richmond, CA, Houston, TX, Perth, Australia and Aberdeen, Scotland. He has participated in design reviews of many major capital projects, primarily in refineries, chemical plants and upstream facilities including guidance in areas of plant/equipment layout, area classification, drainage, fireproofing and fire suppression. He initiated and managed the annual process to review major incidents and near misses throughout his career. Mr. Hartman is a past member of API Safety and Fire Protection subcommittee and chairman of the API Fire Protection Subcommittee.

BOB HLOZEK

Mr. BOB HLOZEK, P.E., is an Instructor/Consultant for John M. Campbell & Co. He has over 40 years of technical experience in the Oil & Gas, Refining, Petrochemicals, and Specialty Chemicals Industries. His extensive background includes process engineering, design and equipment sizing, product development, plant startups, economic evaluations, technical management, business development, and operations, sales, and marketing support. He retired from Dow Chemical Company after 19 years. Prior to Dow, Bob worked for ICI America, Celanese, Northern Natural Gas (Enron), Production Operators (Schlumberger), and several E/C firms. Bob’s expertise is in natural gas processing specializing in sour gas removal, sulfur recovery, and amine solvent technology. He has been involved with many amine plant startups including field troubleshooting of over 100 global plants. Bob has a BSChemE from Texas A&M with graduate studies toward MBA at Univ. of Delaware.

KEITH HODGES

Mr. KEITH J. HODGES is a learning advisor, instructor development consultant and project manager for John M. Campbell & Co. He is British and has now relocated to Spain. He qualified as a Project Manager in the UK and from 2000 to 2005 managed a multi-million pound building project there. Work with JMC includes Project Managing programs in Saudi Arabia and Angola. He has developed and directed an Instructor Acceleration Course for new Campbell instructors and developed a Competency framework for instructors. In 2003 he had a paper relating to project management, published in the Public Service Review, Central Government and an article published within the Public FM in 2006. For a number of years he worked within National Police Training, where he designed, directed and evaluated courses at a National level, including management courses. He has been involved in Computer Supported Collaborative E-Learning since 1996 and continues to develop programs in this medium. He has also directed Coach/Mentor and Management courses in this format. Mr. Hodges has a Masters Degree in Education (M.Ed.), Training and Evaluation, gained from the University of Hull in 1995, and a Post Graduate Certificate in Education from the University of the West of England gained in 1998.

JOE HONEYWELL

Mr. JOE HONEYWELL is a graduate of University of Tulsa with a Bachelor of Science in Aerospace Engineering and a Master’s of Science in Mechanical Engineering. Mr. Honeywell began his career with an engineering consulting company named Crest Engineering. He worked in the mechanical department for thirteen years, specializing in rotating equipment, pressure vessels and piping systems. Mr. Honeywell advanced to project engineer and later project manager, where he was involved in many offshore and onshore projects for oil and gas producers, both domestic and international. Mr. Honeywell joined another consulting company, Crown Tech, Inc. where he worked for 19 years and became a principle in the company. At CTI,
Mr. Honeywell provided engineering services to many oil and gas producers, pipeline companies, power producers and equipment manufacturers. His responsibilities included project management, design, manufacturer, construction management, start-up and operation of power plants, pipelines and production facilities. Mr. Honeywell’s background includes extensive experience with mechanical systems and rotating machinery. Mr. Honeywell is a Registered Professional Engineer, and a member of ASME and holds a U.S.A. patent.

ROBERT HUBBARD

MR. ROBERT A. HUBBARD is President of John M. Campbell & Co. and serves as an Instructor/Consultant. He is based in Norman Oklahoma with over 30 years experience in oil and gas facilities. Mr. Hubbard specializes in gas dehydration and economic evaluation. Mr. Hubbard joined John M. Campbell & Co. in 1980, within the company organization he has held the positions of Vice President, Chief Operating Officer, President and Chief Financial Officer. He now provides consulting and training services worldwide. Previous to John M. Campbell & Co. he held various engineering training services worldwide. Mr. Hubbard received a B.Sc. in Chemical and Petroleum Refining Engineering from the Colorado School of Mines.

JOHN KANENGEITER

MR. JOHN KANENGEITER specializes in executive coaching and working with teams in challenging work systems. His work with leaders in a consulting and executive coaching relationship is augmented by his expertise gained from 20 years in the field of experiential education and leadership development. His practice includes clients as individuals, teams, and large organizations. John is a principle trainer contracted by NASA to work with Space Shuttle Crews in the dynamics of teamwork and leadership on extended space expeditions and worked closely with the Columbia Shuttle Crew. He also works on leadership development with the U.S. Naval Academy, the Wharton School of Business and Wildland Forest Fire Crews. He holds a Masters Degree in Applied Behavioral Science with an emphasis in Executive Coaching and Consulting in Organizations from the Leadership Institute of Seattle, Bastyr University.

BILL KEETER

MR. BILL KEETER joined Allied Reliability in 2006 after serving as President of BK Reliability Engineers, Inc. where he provided training and facilitation services to help facilities improve asset performance using Weibull Analysis, Reliability Centered Maintenance, Availability Simulation, and Life-cycle Cost Analysis. Bill is has over 30 years of experience in Maintenance Engineering and Management. He has successfully implemented maintenance improvement programs in a variety of manufacturing and production facilities. Bill’s experience includes maintenance leadership positions in the US Military, the nuclear industry, chemicals, paper converting, and plastic film manufacturing. He has provided training and reliability consulting services to petroleum, process, mining, and defense industries in the United States, Mid-East, and Europe. Bill has developed competency maps for Reliability, Availability, and Maintainability Engineering for the Petroleum Industry’s PetroSkills® program. Bill has published articles in a variety of internationally recognized maintenance publications, and has presented papers on the practical application of Weibull Analysis at several internationally attended Maintenance and Reliability Conferences. Bill is a Certified Maintenance and Reliability Professional with the Society for Maintenance and Reliability Professionals Certifying Organization. He also holds degrees in Business Administration and Electrical Engineering.

DALE KRAUS

MR. DALE KRAUS is an Instructor/Consultant for John M. Campbell & Co. He has twenty-nine years of progressive responsibility from staff to management positions within the Upstream Oil and Gas Industry. Mr. Kraus has obtained sound basis in Facility/Processing Engineering and Field Operations in Oil and Gas Production. Mr. Kraus is a member of A.P.P.E.G.A. and the Canadian Gas Processors Association. He holds a Bachelor’s degree in Chemical Engineering from the University of Saskatchewan.

LARRY L. LILLY

DR. LARRY L. LILLY has over 30 years experience with Engineering & Consulting companies including design, commissioning and startup. Dr. Lilly provides consulting and training services worldwide including process simulation applications, facilities operations and detailed project development. Dr. Lilly is a member of AIChE, GPSA and numerous local technical societies. He has published extensively on gas and liquid properties, world energy economics and process calculations. Dr. Lilly has presented invited papers for international conferences. In addition he has co-authored numerous operating manuals and equipment selection manuals used by major oil companies. Dr. Lilly has also co-authored three books on Gas Conditioning and Processing and Computer Applications for Production/Processing. He holds a B.S., an M.S. and a PhD in Chemical Engineering from Oklahoma State University.

PERRY LOVELACE

MR. PERRY LOVELACE is the Director of Business Development for John M. Campbell & Co., a PetroSkills member. Mr. Lovelace specializes in Maintenance Management and Competency-based Training Programs and has over 25 years experience in industrial
training and consulting. After graduate studies, he worked for a large consulting mechanical/electrical engineering firm applying rigorous systems analysis to industrial facility design and construction. He has dedicated his career to providing high quality learning experiences, keeping in tune with the changing economic and technological environment, especially as applied to long-term facilities and equipment management. He has assisted many organizations through on-site consultation and training. Clients include industrial and utility organizations of different types and sizes in the United States, Kingdom of Saudi Arabia, United Arab Emirates, Qatar, Canada, New Zealand, Australia, Thailand, Malaysia, Singapore, Trinidad/Tobago, UK and Mexico. A certified Maintenance and Reliability Professional (CMRP) by the Society for Maintenance and Reliability Professionals and a member of the Society of Petroleum Engineers, Mr. Lovelace also holds a B.S. in Science Education and an M.S. in Botany from the University of Oklahoma, with pre-doctoral studies in Plant Ecology at the University of California.

HARVEY MALINO

MR. HARVEY MALINO is an Instructor/Consultant for John M. Campbell & Co. He has more than 35 years of experience in the Chemical and Hydrocarbon Processing Industries. During his 28 years with Union Carbide Corporation/UOP, he held both technical and commercial positions. These included: Molecular Sieve Technical Manager- Design and Field Service; Licensing Manager for the Ethylene Oxide business; Area Sales and Marketing Manager for Southeast Asia; Business Manager for the Gas Processing Business Group; and, World Wide Sales Manager for the Gas Processing Business Group. Mr. Malino has lived and worked in New Hampshire, Maine, New York, Singapore and Chicago Mr. Malino is a registered Professional Engineer in the State of New Hampshire. He is a Senior Member of the Advisory Board of the Laurence Reid Gas Conditioning Conference in Norman, OK. Mr. Malino earned a B.S. in Chemical Engineering from the City College of New York; and, an M.B.A from Pace University in New York.

ANDREA MANGIAVACCHI

MR. ANDREA MANGIAVACCHI is an Instructor/Consultant with John M. Campbell & Co. in the Offshore Discipline. A free-lance independent consultant since 2001, Andrea is involved in international deep-water offshore projects on behalf of several major clients. As technical liaison member between API and ISO committees, he is also actively involved in the development of US and international standards for offshore structures. After an early involvement in teaching and research activities at the University of Rome, Italy and at Rice University in Houston, Andrea joined Brown & Root (today KBR), where over the next 25 years he was involved in a number of major international offshore oil and gas projects (Gulf of Mexico, North Sea, South America, West Africa, Asia-Pacific). He also held a number of corporate positions in the area of deep water technology, fixed and floating offshore structures. Andrea has extensive experience in structural analysis and design, hydrodynamics, naval architecture, Computer Aided Engineering and Design. Andrea holds a M.Sc. in Nuclear Engineering and a Ph.D. in Aerospace Engineering, both from the University of Rome.

JOHN MORGAN

MR. D. JOHN MORGAN is based in Denver, Colorado, and is Executive Vice President of John M. Campbell & Co. with over 30 years experience in the design, startup and troubleshooting of oil and gas facilities. He has published extensively on sour gas treating, sulfur recovery, CO₂ treating, materials of construction, LNG training, and cryogenic gas processing. He consults for both North American and international clients in the gas processing industry. He performs training in LNG facilities, oil and gas production facilities, and gas plants around the world. He is very active in industry activities including membership of the Editorial Review Board of the Gas Processors Supplier’s Association, the Program Advisory Committee of the Laurence Reid Gas Conditioning Conference, and had served as Adjunct Professor of Petroleum Engineering at Colorado School of Mines. Mr. Morgan has many years of experience training non-native English speakers. He holds a B.Sc. (Honors) in Chemical Engineering from London University; and an M.E. in Chemical & Refinery Engineering from Colorado School of Mines, USA.

MAHMOOD MOSHFEGHIAN

DR. MAHMOOD MOSHFEGHIAN is an Instructor/Consultant with John M. Campbell & Co. (JMC). He is the author of most of Campbell Tips of the Month and develops technical software for JMC. He has 30 years teaching experience in universities (Oklahoma State University, University of Shiraz, University of Sydney and University of Qatar) as well as for oil and gas industries. Dr. Moshfeghian joined JMC in 1990 as a part time consultant and then as full time Instructor/Consultant in 2005. Previous to joining JMC, Dr. Moshfeghian was a Senior Research Scientist at Kuwait Institute for Scientific Research and Professor of Chemical Engineering at Shiraz University. Dr. Moshfeghian is a senior member of AIChE and has published numerous technical papers on thermodynamic properties, and Process Engineering. Dr. Moshfeghian has presented invited papers in international conferences. He holds a B.S., an M.S. and a Ph.D. in Chemical Engineering, all from Oklahoma State University.

RALPH NEUMANN

MR. RALPH NEUMANN is an Instructor/ Consultant for John M. Campbell & Co.’s Gas Processing courses. Throughout his extensive career, Mr. Neumann has gained experience in Oil and Gas Production, Natural Gas Processing, Specialty Fractionation, and Pipelines and Gathering Systems. Responsibilities have included the development of conceptual and detailed designs, multi-discipline project supervision, economic feasibility studies, consulting, and a variety of field services including pre-commissioning, startup, training, and troubleshooting. He has also been responsible for project development, management of engineering (including safety and environmental), and management of field operations for a large midstream natural gas processing company. He has authored and presented technical papers to AIChE (dynamic simulation) and Gas Processors Association (nitrogen rejection facilities, gas plant operations management, and gas and NGL treating). Mr. Neumann received his baccalaureate and master’s degrees in Chemical Engineering from Rice University in Houston, Texas.
MR. STEPHEN T. PEHNEC is JMC’s Senior Manager and Instructor of Operator Training. He joined the company in 1990. He is responsible for the design, development and delivery of operator training programs, worldwide. Mr. Pehnec has more than 38 years of experience in oil & gas exploration, production and processing operations, including technical, supervisory and management positions. He has delivered pre-startup training for a number of large projects, such as Qatar Petroleum’s North Field Project (Um Said, 1991) and Sable Offshore Energy’s Goldboro and Point Tupper plants (Nova Scotia, 1999). Mr. Pehnec holds a BA degree (Physics) from the California University of Pennsylvania (1971) and an MBA degree (Operations Management) from Waynesburg College (1989). He has earned instructor certificates from the Petroleum Industry Training Service (PITS, 1984) and Abacus Learning Systems (2002), and he has completed a number of JMC’s engineering-level courses.

DENNIS PERRY

MR. DENNIS PERRY is a training consultant with John M. Campbell & Co. and teaches in the Electrical and Instrumentation discipline. Mr. Perry has been working in the automation, electrical and instrumentation design business for many years. His work experience includes working in the aerospace industry as an analog circuit designer, working in the electronic instrument manufacturing business as production engineering manager, and working for a major oil and gas company as a division automation supervisor and later as a staff engineer in the central, Upstream Technology group. He has also worked for an instrument manufacturer as service manager and for an engineering construction company as an instrument/electrical engineer. Mr. Perry Graduated from Louisiana Tech with a B.S. degree in Electrical Engineering.

PETER REEVES

MR. PETER REEVES is an Instructor/Consultant for John M. Campbell & Co. He has over 18 years experience, 13 years of which is in Oil and Gas Processing and LNG. Particular areas of expertise include: gas processing; LPG/condensate recovery from gas; NGL fractionation and storage; process optimization; LNG; heavy oil processing; field development planning, including high level cost estimating and scheduling; steady state and dynamic process simulation; and plant operations. Mr. Reeves is a member of several professional societies. These memberships include MChemE, CEng, and Gas Processors Association. Mr. Reeves has experience both as a Contractor/Consultant and in an Operating Company environment. His design experience ranges from field development/concept screening studies to front end engineering, dynamic simulation studies and detailed design. Operations experience includes plant troubleshooting, performance monitoring, process optimization, energy efficiency improvements and process development/ improvement. Mr. Reeves received his B.S. in Chemical Engineering from the University of Birmingham.

FRED RUSSELL

MR. FRED RUSSELL is a training consultant with John M. Campbell & Co. Mr. Russell has enjoyed a forty-five year career in chemical engineering in the hydrocarbon processing business. Mr. Russell started his career as a gas reservoir engineer and concluded as Vice President and General Manager of a manufacturing company serving the oil and gas industry. He has extensive experience in domestic as well as international projects in designing and building such facilities as expander plants, oil absorption units, refrigeration systems, and compressor stations. He was given the Hanlon Award in 1999 by the GPSC and was named Outstanding Engineering Alumnus by the Rice Engineering Alumni Association in 2000. Mr. Russell received a B.S. in Chemical Engineering from Rice University.

JOHN SHEFFIELD

MR. JOHN A. SHEFFIELD is a Senior Manager with M.W. Kellogg Ltd, a major UK E&C Company for more than 16 years. John was the manager of the Process Engineering Department, Project Manager for development of LNG projects for export and import terminals and Commercial Vice President with responsibilities for key clients and projects. He helped develop projects for LNG facilities in the UK, China, Norway, Egypt, Germany and Australia and the development of LNG offshore technology for the Azure Project an EU funded project. With John M. Campbell & Co. John is an Instructor/Consultant presenting short courses on the LNG business and technologies on both an In-House and public basis in venues around the world. He also practices as a consultant, assisting companies with development of both LNG export and reception terminals and is currently active with major LNG projects in Europe and Far East Asia. John graduated from UC London with a degree in Chemical Engineering. He has served on the Management Committee of the European GPA for more than 12 years and chairs the GPA Europe LNG working party.

PRAVIN SHETH

Mr. Pravin Sheth is a consultant with over 27 years of experience in refining industry in the areas of Technical Training, Technical Service, Refinery Operations and Asset Support. During his previous experience he was responsible for providing technical training, technical service and design support to worldwide ExxonMobil affiliates and technology licensors. He was Lead Asset Support Engineer responsible for providing technical support to company’s worldwide Sulfur, Amine and Cat Cracker units. He has also served as a Sulfur, Amine and FCC complex operation supervisor. Mr. Sheth presented “Sulfur Recovery Unit Operation with Lean acid gas feed” at PT Arun conference in Bali, Indonesia in 1993. He was a Panel Member at the National Petroleum and Refining Association in 2004. And he presented “Cat Cracker Operations Troubleshooting” at the National Petroleum and Refining Association Cat Cracker Seminar in Houston, Texas during 2006. Mr. Sheth received his Bachelor’s in Chemical Engineering in India and a Master’s in Chemical Engineering from the University of Missouri.
RICKY SMITH

MR. RICKY SMITH has over 30 years experience in maintenance as a maintenance manager, maintenance supervisor, maintenance engineer, maintenance training specialist, maintenance consultant and is a well known published author. Ricky has worked with maintenance organizations in hundreds of facilities, industrial plants, etc, worldwide in developing reliability, maintenance and technical training strategies. Prior to joining Allied Reliability in 2008, Ricky worked as a professional maintenance employee for Exxon Company USA, Alumax (this plant was rated the best in the world for over 18 years), Kendall Company, and Hercules Chemical providing the foundation for his reliability and maintenance experience. Ricky is the co-author of “Rules of Thumb for Maintenance and Reliability Engineers”, “Lean Maintenance” and “Industrial Repair, Best Maintenance Repair Practices”. Ricky also writes for different magazines during the past 20 years on technical, reliability and maintenance subjects. Ricky holds certification as Certified Maintenance and Reliability Professional from the Society for Maintenance and Reliability Professionals as well as a Certified Plant Maintenance Manager from the Association of Facilities Engineering.

GORDON STERLING

MR. GORDON STERLING is based in The Woodlands, Texas. In a 35-year career with Shell E & P, USA, he was involved in many deepwater developments. He was the design supervisor for the Cognac Platform, in 1978, which set the "deepwater" record at 1024 feet of water; the project manager for the Bullwinkle Platform, which set a new water depth record of 1354 feet in 1988, and the Construction Planning Manager for the Auger Tension Leg Platform (TLP) in 2850 feet. He was the Manager of Major Projects for Shell’s Deepwater Division in New Orleans during the mid and late 90’s when the Mars, Ram Powell and Ursa TLP’s were designed, built and installed, (Ursa in 3950 feet of water) and when the Mensa subsea development in 5400 feet of water was designed, built and brought on production. From 1991 through 1999 he was on the Board of Directors of the Offshore Technology Conference (OTC), the largest technical conference related to offshore oil and gas in the world, annually host to 45,000 or so visitors in Houston, Texas. He was Chairman of the conference in 1998 and 1999. In 2008 he was chosen for the prestigious Heritage Award by the OTC. With this background he brings a broad knowledge of the early development planning steps, and a detailed knowledge of the development and production system options. In association with two colleagues he has written a book titled "Deepwater-Petroleum Exploration and Production-A non-technical guide", which was recently published by PennWell.

KINDRA SNOW-MCGREGOR

MS. KINDRA SNOW-MCGREGOR has been working in the oil and gas business industry for 11 years. Prior to joining Campbell Consulting, she was the Process Engineering Department Manager for Pearl Development Company where she managed and mentored eight engineers with a variety of work experience and backgrounds. Her favorite responsibility in this position was mentoring and training the team. She has been actively involved in industry groups such as the Gas Processors Association, and the Rocky Mountain Gas Processors Association (RMGPA). Currently she is on the GPA Technical Research Committee, Sub-Group 2, and is a RMGPA scholarship committee member. She enjoys presenting technical papers at conferences and encourages the rest of her staff to do so as well. Ms. Snow-McGregor also worked at Washington Group International where she completed projects for clients such as ExxonMobil, ConocoPhillips, and QatarGas. At Washington Group, she was also responsible for developing the oil and gas process engineering training program. She graduated from Colorado School of Mines with a Bachelors and Masters degree in Chemical Engineering and Petroleum Refining.

RICKY SMITH

RICKY SMITH has over 30 years experience in maintenance as a maintenance manager, maintenance supervisor, maintenance engineer, maintenance training specialist, maintenance consultant and is a well known published author. Ricky has worked with maintenance organizations in hundreds of facilities, industrial plants, etc, worldwide in developing reliability, maintenance and technical training strategies. Prior to joining Allied Reliability in 2008, Ricky worked as a professional maintenance employee for Exxon Company USA, Alumax (this plant was rated the best in the world for over 18 years), Kendall Company, and Hercules Chemical providing the foundation for his reliability and maintenance experience. Ricky is the co-author of “Rules of Thumb for Maintenance and Reliability Engineers”, “Lean Maintenance” and “Industrial Repair, Best Maintenance Repair Practices”. Ricky also writes for different magazines during the past 20 years on technical, reliability and maintenance subjects. Ricky holds certification as Certified Maintenance and Reliability Professional from the Society for Maintenance and Reliability Professionals as well as a Certified Plant Maintenance Manager from the Association of Facilities Engineering.

KINDRA SNOW-MCGREGOR

KINDRA SNOW-MCGREGOR has been working in the oil and gas business industry for 11 years. Prior to joining Campbell Consulting, she was the Process Engineering Department Manager for Pearl Development Company where she managed and mentored eight engineers with a variety of work experience and backgrounds. Her favorite responsibility in this position was mentoring and training the team. She has been actively involved in industry groups such as the Gas Processors Association, and the Rocky Mountain Gas Processors Association (RMGPA). Currently she is on the GPA Technical Research Committee, Sub-Group 2, and is a RMGPA scholarship committee member. She enjoys presenting technical papers at conferences and encourages the rest of her staff to do so as well. Ms. Snow-McGregor also worked at Washington Group International where she completed projects for clients such as ExxonMobil, ConocoPhillips, and QatarGas. At Washington Group, she was also responsible for developing the oil and gas process engineering training program. She graduated from Colorado School of Mines with a Bachelors and Masters degree in Chemical Engineering and Petroleum Refining.

GORDON STERLING

GORDON STERLING is based in The Woodlands, Texas. In a 35-year career with Shell E & P, USA, he was involved in many deepwater developments. He was the design supervisor for the Cognac Platform, in 1978, which set the “deepwater” record at 1024 feet of water; the project manager for the Bullwinkle Platform, which set a new water depth record of 1354 feet in 1988, and the Construction Planning Manager for the Auger Tension Leg Platform (TLP) in 2850 feet. He was the Manager of Major Projects for Shell’s Deepwater Division in New Orleans during the mid and late 90’s when the Mars, Ram Powell and Ursa TLP’s were designed, built and installed, (Ursa in 3950 feet of water) and when the Mensa subsea development in 5400 feet of water was designed, built and brought on production. From 1991 through 1999 he was on the Board of Directors of the Offshore Technology Conference (OTC), the largest technical conference related to offshore oil and gas in the world, annually host to 45,000 or so visitors in Houston, Texas. He was Chairman of the conference in 1998 and 1999. In 2008 he was chosen for the prestigious Heritage Award by the OTC. With this background he brings a broad knowledge of the early development planning steps, and a detailed knowledge of the development and production system options. In association with two colleagues he has written a book titled “Deepwater-Petroleum Exploration and Production-A non-technical guide”, which was recently published by PennWell.

RICHARD VAN LAERE

DR. RICHARD J. VAN LAERE is an Instructor/Consultant for John M. Campbell & Co’s Mechanical and Pipeline courses. His career began in 1969 with positions of increasing responsibility. Mr. Van Laere is on the Board of Directors of the Gulf South Minority Supplier Diversity Council and the Louisiana Pipeliners Association. Other memberships include Texas Board of Engineers, Louisiana State Bar Association, and the Louisiana Mississippi Oil and Gas Association. He also sits on the Environmental Advisory Committee for the Department of Energy Strategic Petroleum Reserve as the pipeline expert. He was selected Executive of the Year in 2001 by Equiva Services for his contributions to supplier diversity. Mr. Van Laere graduated with a BSME in from the University of Tulsa and with a Juris Doctor degree in civil law in from Loyola Law School in
New Orleans. He is a registered professional engineer in Texas and an attorney licensed to practice law in the state of Louisiana.

VINTON (BUD) VESTA
MR. BUD VESTA is currently the International Operations Manager for Mid-Western, manufacturer of both power equipment and irrigation products for consumer, commercial and agricultural customers. Previously, he served with Mobil Oil Corporation (now ExxonMobil) for over 20 years in a variety of operations management positions including over 3 years as General Manager and Director of Logistics for Mobil Oil Japan. He also served with the U.S. Army as a logistics officer for nearly five years. During his working career he has had foreign assignments for nearly 11 years. Mr. Vesta is also specialized in a number of operations research models and has conducted numerous logistics optimization studies and has conducted training in related areas. He is an accomplished project manager and has successfully lead large scale international teams engaged in ERP/ERP and implementations. Mr. Vesta holds an M.A. in Political Science from Northern Illinois University and an MBA in Finance and Management from George Mason University. He conducts frequent volunteer training in various forums including an annual guest lecturer at Bethel University in St. Paul, MN.

JIM VINSON
MR. JIM VINSON is a project manager and instructor with over 30 years experience in the areas of industrial technical sales and services, project management, and technical management. He has lived and worked in worldwide locations, specifically, Holland, Saudi Arabia, Bahrain, Qatar, United Arab Emirates, and South America. Mr. Vinson has held several management positions in the energy and power industry which include heavy equipment commissioning, pre-commissioning, routine maintenance services, and specialty chemical cleaning. His responsibilities included liaison and consulting work between clients, owners, operators, and engineering-construction companies on numerous large heavy industrial projects: electric power plants, desalination plants, refineries, petrochemical plants, fertilizer and methanol plants, as well as GOSP, GTL, and NGL plants. Mr. Vinson received baccalaureate degrees in Chemistry from Cameron University and the University of Oklahoma, followed by advanced degrees at OU and OSU.

STUART WATSON
MR. STUART WATSON has over 13 years of experience from Offshore Australia, the Middle East and the United States. Stuart relocated to the U.S. in January 2000 and worked with Pearl Development Co. of Colorado on an array of Gas production and processing facilities including; Expansions for the Unocal Alaska Swanson River Plant; Facility engineer at the El Paso Field Service’s 650Mscfd “Chaco Plant” in 2002 – 2004 and various other projects in Colorado and Wyoming, Stuart has recently completed project oversight and commissioning of a 92MMscfd amine sweetening and cryogenic NGL train for the Government of Ras Al Khaimah (U.A.E.) and has started his own engineering consultancy in 2009 supporting both mechanical and process disciplines. Stuart graduated in 1996 from Curtin University, Perth, Australia with a bachelor’s degree in Mechanical Engineering (honors).

LEONARD WEGMAN
MR. LEONARD WEGMAN is a training consultant with John M. Campbell & Co. Mr. Wegman has over 25 years experience in operations and maintenance of production and processing facilities in Wyoming with Amoco Production Company and Burlington Resources. This includes operating procedure development, and participating in plant PHA’s. In his spare time Mr. Wegman enjoys hunting and camping, Mr. Wegman holds a Bachelors of Business Administration degree from Washburn University in Topeka, Kansas.

PETER WILLIAMS
MR. PETER WILLIAMS is an Instructor/Consultant with over 35 years of industrial experience, most of which were in oil and gas processing. His experience includes plant process engineering, operations supervision, project development and business case definition, project technical support, plant engineering management, and internal consulting, primarily with Saudi Aramco. Canadian experience includes plant engineering in phosphorus production, heavy water, and bitumen upgrading, and project engineering. He also has experience with benchmarking, implementation of a safety management system, and the application of lean Six Sigma methods to engineering management. He has Masters’ degrees in Chemical Engineering and in Economics, is a Professional Engineer in Alberta and is a certified Six Sigma Black Belt.

RONN WILLIAMSON
MR. RONN E. WILLIAMSON, C.P.M., CFPI M is an Instructor/Consultant for PetroSkills/John M. Campbell & Co. He has been consulting and instructing in the field of supply chain management for more than fifteen years. During this time, he has delivered significant value to more than fifty, cross-industry organizations. He has provided education programs internationally to hundreds of people in procurement, logistics and materials management. In 2005, he joined the PetroSkills/John M. Campbell team to develop a competency-based training model for Procurement/Supply Chain Management (PSCM) for the oil and gas industry. Ronn gained his supply management expertise during twenty-three years of operational and management roles for a major equipment OEM company. For five years, he had executive responsibility for purchasing and transportation at Thermo King Corporation, a subsidiary of Westinghouse Electric and a billion-dollar global business. Ronn received an undergraduate degree (BME) in engineering and a master of business administration degree (MBA) from the University of Minnesota. He has been a member and past chapter president, of the American Production and Inventory Control Society (APICS). He is a member of the Institute for Supply Management (ISM) and the International Association for Commercial Contract Management (IACCM). Ronn is certified at the Fellow Level by APICS and has a lifetime certification from ISM.
INSTRUCTORS

WES WRIGHT

MR. WES WRIGHT has 25 years experience in oil and gas producing facilities and is currently a Consultant and Instructor. Mr. Wright began teaching with John M. Campbell & Co. in 2004 where he has been delivering courses in CO2 Surface Facilities, Oil and Gas Processing and Operator Training world-wide. Prior to joining John M. Campbell & Co., Mr. Wright was the lead on-site engineer at the Weyburn CO2 Miscible flood where he was closely involved in the development, design, construction, start-up and operations. Through the 1980’s, Mr. Wright performed contract research at the University of Calgary in Enhanced Oil Recovery, and was a consultant on a wide range of sweet and sour oil and gas projects throughout Western Canada. Mr. Wright graduated in 1983 with a BSc in Engineering from the University of Calgary. He is a Professional Engineer in Saskatchewan and Alberta, Canada and is a member of the SPE. He has been published in the ASME-OMAE, the CSCE and the IAHR.

CLYDE YOUNG

MR. CLYDE YOUNG is a training consultant with John M. Campbell & Co. Mr. Young has over twenty-five years of diverse experience in operations and maintenance of production and processing facilities. This includes significant experience in operations and development of management systems for gas processing and water/wastewater treatment facilities, which includes operating procedure development, training program development, compliance auditing, vulnerability assessment, emergency planning and mechanical integrity program development. Mr. Young holds a B.S. in Social Sciences from the University of Wyoming - Laramie, Wyoming.

PetroSkills Operations & Maintenance

PetroSkills & SAIT Polytechnic are collaborating to deliver top quality, readily available training resources for operations and maintenance personnel. Current O&M offerings range from instructor-led courses to online computer-based content. Role-specific coverage includes:

- Production Field Operators
- Gas Process Operators
- E&I Maintenance Technicians
- Mechanical Maintenance Technicians...and many others

Access current O&M related offerings at:

www.petroskills.com/OM
REGISTRATION AND PAYMENT

In a worldwide teaching operation, sufficient lead time is needed for course logistics. For this reason, PetroSkills/John M. Campbell & Co. would appreciate receiving registrations at least one month before the course. However, we accept paid registrations for a viable session through the day before the course begins. Registrations can be made online at www.petroskills.com or www.jmcampbell.com or by contacting customerservice@petroskills.com or registrar@jmcampbell.com for a Registration Form.

Registrations are confirmed upon receipt of payment. In the meantime, an Acknowledgment of Reservations will be issued via email. Once payment is received, an email will be issued confirming the registrant’s seat in the course. Please note we do not arrange hotel accommodations for participants. When possible, we reserve a block of rooms at the suggested hotel(s). Participants should contact the suggested hotel directly for room rates and availability at least three weeks before the course begins. Remember to mention that you are attending a PetroSkills or John M. Campbell & Co. course to receive a discounted rate, if applicable. Please note if a course venue changes for whatever reason, the participant or their representative will be contacted via email.

TUITION FEES

Tuition fees are due and payable in US dollars upon receiving the corresponding invoice. Again, a registration will not be confirmed until payment has been received.

Tuition fees do not include living costs, but do include tuition, purchase price of course materials, daily refreshments, and a $100.00(USD) non-refundable registration fee, per five days of training or less. Tuition must be paid prior to the first day of the course. If payment has not been made prior to the course start date, the registrant or their representative should contact the appropriate Customer Service Department to make payment arrangements.

Note: Where applicable due to government regulations, Goods and Services Tax (GST) or Value Added Tax (VAT) will be added to the total tuition fees. Pricing subject to change. See website for current pricing and availability.

TRANSFERS, SUBSTITUTIONS, CANCELLATIONS AND REFUNDS

Transfers may be accepted if received 30 days or more before the course begins. There is not a transfer fee but tuition will be due based on the registered course. PetroSkills/John M. Campbell & Co. may allow a registrant to transfer to a subsequent course after the 30-day cut off period providing the tuition fees have been paid and the requested course is open for enrollment. If a transfer is made and the subsequent course is not attended, no money will be refunded. Only one transfer per initial registration is allowed. Substitutions may be made at any time without penalty.

If it is necessary to cancel an enrollment, full paid tuition, less the non-refundable registration fee of $100.00(USD) per five days of training or less, will be refunded providing the cancellation is received in our office 30 days or more prior to the course start date. If tuition is not paid at the time of the cancellation, the $100.00(USD) registration fee per five days of training or less is due, providing the 30 day notice was received. For cancellations received less than 30 days prior to the course, the full tuition fee is due. Please contact the appropriate Customer Service Department if you wish to cancel or transfer your enrollment. Enrollments are not automatically cancelled if tuition payment is not received by the start of the course.

Transfers and cancellations will not be honored and tuition is forfeited and non-transferable for courses that have reached maximum participation regardless of the amount of notice given.

We reserve the right to cancel any course session at any time. This decision is usually made approximately two weeks before the course begins. If we cancel a course, enrollees will be given the opportunity to transfer to another course or receive a full refund, provided the enrollment was not transferred into the cancelled course late. Keep our cancellation policy in mind when making travel arrangements (airline tickets, hotel reservations, etc.), as we cannot be responsible for any fees charged for canceling or changing your travel arrangements. We reserve the right to substitute course instructors as necessary.

CERTIFICATES, PROFESSIONAL DEVELOPMENT HOURS (PDHs) AND CONTINUING EDUCATION UNITS (CEUs)

A Certificate of Completion is awarded to each participant who satisfactorily completes the course and will be awarded by the instructor(s) on the final day.

John M. Campbell course hours can be used to satisfy PDHs for licensed engineers in most states. In many instances Campbell course hours can be used for international CEU credit also. At every Campbell course a form is available that can be used to submit your course hours to your licensing board or accrediting body for approval.

All classes available at your location. Contact us today.
Free Kindle e-book Reader in Select 2011 Courses

Free Kindle e-Book Reader when you enroll in:

Onshore Gas Gathering Systems: Design and Operations (PF-45)
- Mar. 7-11 Houston
- June 6-10 Denver
- Nov. 14-18 Orlando

Process Safety Engineering (PS-4)
- Mar. 21-25 Houston

Fundamentals of Offshore Systems Design and Construction (OS-4)
- April 4-15 Houston

Relief and Flare Systems (PF-44)
- Oct. 17-21 Houston

Crisp Dark Fonts
Built in Wi-Fi
Built in PDF Reader
Built in Dictionary
High-Contrast E Ink Screen
Slim and Lightweight
Battery Life of Up to One Month
Holds up to 3,500 Books

* Image is for display purposes only. Restrictions apply. See John M. Campbell and Company website for details.

Support Our Young Professionals

A portion of each enrollment in a John M Campbell & Company course goes towards supporting the Young Professionals of The Society of Petroleum Engineers and The Gas Processors Association. We hope you will join us in supporting these Young Professionals.